Abstract:By easing the consistency hypothesis of alternative or complementary auction items for bidders, this paper establishes a combinational auction model according to bidders' bid on the basis of combinatorial auction mechanism design. In order to efficiently obtain the optimal allocation of multiple items, particle swarm optimization (PSO) algorithm is used to simulate the optimization process of allocation, and then the combinatorial auction model based on PSO algorithm is constructed. The paper designs and implements the combinatorial auction model based on PSO algorithm on swarm simulation platform, and verifies the simulation validation through a specific combinational auction example. The analysis of simulation results shows that the combinatorial auction model based on PSO algorithm can effectively solve the problem of the distribution of multiple items, and can maximize the benefit of the vendor. The parameter analysis of learning ability shows that compared with self-learning ability, social learning ability is more important to the optimization of seller's return. This paper will have certain reference value to both the theoretical research and practical application of combinatorial auction.
[1] Jackson C. Technology for spectrum markets[D]. Cambridge:Department of Electrical Engineering, MIT, 1976. [2] Rassenti S J, Smith V L, Bulfin R L. A combinatorial auction mechanism for airport time slot allocation[J]. Bell Journal of Economies, 1982, 13(2):402-417. [3] Jehiel P, Moldovanu B. Efficient design with interdependent valuations[J]. Econometrica, 2001, 69(5):1237-1259. [4] Vires S, Vohra R. Auctions and the German UMTS-auction[J]. Mitteilungender DMV, 2001, 1(2):1-8. [5] Cramton P. Spectrum auctions[M]//Cave M, Majumdar S, Vogelsang I. Handbook of Telecomm Unications Economics, Amsterdam:Elsevier Science BV, 2002, 1(14):605-639. [6] Binmore K, Klemperer P. The biggest auction ever:The sale of the British 3G telecom license[J]. Economic Journal, 2002, 112(478):74-96. [7] Klemperer P. How (not) to run auctions:The European 3G telecom auctions[J]. European Economic Review, 2002, 46(4-5):829-845. [8] 王宏. 组合拍卖的理论与实践:一个文献综述[J]. 产业经济评论, 2009, 8(1):111-146.Wang H. The theory and practice of combinatorial auction:A survey[J]. Review of Industrial Economics, 2009, 8(1):111-146. [9] Banks J S, Ledyard J O, Porter D P. Allocation uncertain and unresponsive resources:An experimental approach[J]. Journal of Economics, 1989, 20(1):1-25. [10] Krishna V, Rosenthal R W. Simultaneous auctions with synergies[J]. Game and Economics Behavior, 1997, 17(1):1-31. [11] Nisan N, Ronen A. Algorithmic mechanism design[J]. Games and Economic Behavior, 2001, 35(1-2):166-196. [12] Parkes D C. Optimal auction design for agents with hard valuation problem[C]//Moukas A, Sierra C, Ygge F. Agent Mediated Electronic Commerce Ⅱ:Towards Next-Generation Agent-Based Electronic Commerce Systems. Berlin:Springer, 2000. [13] Parkes D C. Iterative combinatorial auctions:Achieving economic and computational efficiency[D]. America:University of Pennsylvania, 2001. [14] Ausubel L M. An efficient ascending-bid auction for multiple objects[J]. American Economic Review, 2004, 94(5):1452-1475. [15] Ausubel L M. An efficient dynamic auction for heterogeneous commodities[J]. American Economic Review, 2006, 96(3):602-629. [16] 陈培友, 汪定伟. 组合拍卖竞胜标确定问题的混沌搜索算法[J]. 管理科学学报, 2003, 6(5):24-28.Chen P Y, Wang D W. Chaotic search algorithm for winner determination in combinatorial auctions[J]. Journal of Management Sciences in China, 2003, 6(5):24-28. [17] 陈培友, 汪定伟. 用改进遗传算法求解组合拍卖竞胜标[J]. 东北大学学报(自然科学版), 2004, 25(4):349-351.Chen P Y, Wang D W. Genetic algorithm for solving winner determination in combinatorial auctions[J]. Journal of Northeastern University (Natural Science), 2004, 25(4):349-351. [18] 金# [62], 石纯一. 一种边际效用递减组合拍卖的胜者决定算法[J]. 计算机研究与发展, 2006, 43(7):1142-1148.Jin X, Shi C Y. A winner determine algorithm for combinatorial auctions with decreasing marginal utilities[J]. Journal of Computer Research and Development, 2006, 43(7):1142-1148. [19] 鲍娜, 张德贤, 孙傲冰, 等. 基于改进蚁群算法的网格组合拍卖资源分配[J]. 计算机技术与发展, 2009, 19(10):149-151.Bao N, Zhang D X, Sun A B, et al. Research on resource allocation of combinatorial auction in grid based on improved antcolony algorithm[J]. Computer Technology and Development, 2009, 19(10):149-151. [20] 甘荣伟, 郭清顺, 常会友, 等. 获胜者确定问题的启发规则与改进蚁群算法[J]. 小型微型计算机系统, 2009, 30(8):1635-1638.Gan R W, Guo Q S, Chang H Y, et al. Heuristic rules and improved ant colony optimization algorithm for winner determination[J]. Journal of Chinese Computer Systems, 2009, 30(8):1635-1638. [21] 祁宁, 汪定伟. XOR标集的逆向组合拍卖的获胜者确定问题[J]. 系统工程学报, 2013, 28(6):748-755.Qi N, Wang D W. Winner determination problem in reverse combinatorial auction with XOR bids[J]. Journal of Systems Engineering, 2013, 28(6):748-755. [22] 郑君君, 何鸿勇, 张平. 基于无标度网络与观点传播动力学的股权拍卖机制设计与仿真研究[J]. 系统工程理论与实践, 2015, 35(8):2044-2053.Zheng J J, He H Y, Zhang P. Research on mechanism design and simulation of equity auction based on scale-free network and dynamics of opinion spread[J]. Systems Engineering-Theory & Practice, 2015, 35(8):2044-2053. [23] 郑君君, 闫龙, 张好雨, 等. 基于演化博弈和优化理论的环境污染群体性事件处置机制[J]. 中国管理科学, 2015, 23(8):168-176.Zheng J J, Yan L, Zhang H Y, et al. Disposal mechanism of environmental pollution mass incidents based on evolutionary game and optimization theory[J]. Chinese Journal of Management Science, 2015, 23(8):168-176. [24] 黄河, 陈剑. 政府采购组合拍卖机制[J]. 重庆大学学报:自然科学版, 2006, 29(6):140-143.Huang H, Chen J. Government procurement combinatorial auction mechanism[J]. Journal of Chongqing University (Natural Science Edition), 2006, 29(6):140-143. [25] 黄河, 陈剑. 采购组合拍卖改进机制研究[J]. 系统工程理论与实践, 2007, 27(11):43-47.Huang H, Chen J. On revised QA-VCG mechanism in procurement combinatorial auction[J]. Systems Engineering-Theory & Practice, 2007, 27(11):43-47. [26] 黄河, 陈剑, 徐鸿雁. 多因素采购组合拍卖动态机制设计研究[J]. 中国管理科学, 2008, 16(1):104-110.Huang H, Chen J, Xu H Y. Research on multi-attribute procurement combinatorial auction dynamic mechanism design[J]. Journal of Management Science, 2008, 16(1):104-110. [27] 黄河, 陈剑, 徐鸿雁. 组合采购拍卖的多因素投标机制设计研究[J]. 中国软科学, 2008(7):134-140.Huang H, Chen J, Xu H Y. Procurement combinatorial auction mechanism design based on multi-attributes bidding[J]. China Soft Science, 2008(7):134-140. [28] 汪定伟. 网上集中采购的捆绑-组合拍卖机制设计[J]. 系统工程学报, 2011, 26(6):809-816.Wang D W. Mechanism design of hybrid bundling and combination auction for centralized E-procurement[J]. Journal of Systems Engineering, 2011, 26(6):809-816. [29] 黄河, 陈剑. 组合拍卖与议价谈判机制设计研究[J]. 管理科学学报, 2010, 13(2):1-11.Huang H, Chen J. Mechanism design on combinatorial auctions and bargaining[J]. Journal of Management Sciences in China, 2010, 13(2):1-11. [30] 祁宁, 汪定伟. 允许不完全拍卖的多轮逆向组合拍卖机制[J]. 管理科学学报, 2013, 16(3):61-67.Qi N, Wang D W. Multi-round reverse combinatorial auction mechanism allowing incomplete auction[J]. Journal of Management Sciences in China, 2013, 16(3):61-67. [31] 王先甲, 杨森, 张柳波. 随机等价互补品序贯组合拍卖数量折扣研究[J]. 系统工程理论与实践, 2014, 34(5):1196-1201. Wang X J, Yang S, Zhang L B. Research on quantity discount in sequential combinatorial auctions with stochastically equivalent complementary objects[J]. Systems Engineering-Theory & Practice, 2014, 34(5):1196-1201. [32] Levin J. An optimal auction for complements[J]. Game and Economic Behavior, 1997, 18(2):176-192. [33] 殷红. 多物品拍卖机制理论与方法[M]. 上海:学林出版社, 2009.Yin H. The theory and method of mechanism design for multi-object auction[M]. Shanghai:Xuelin Press, 2009. [34] 胡国庆. 网上互补异质多物品拍卖机制设计与应用研究[D]. 青岛:中国海洋大学, 2009.Hu G Q. Research on online complementary heterogeneous multi-object auction mechanism design and application[D]. Qingdao:Ocean University of China, 2009. [35] 刘志雄, 梁华. 粒子群算法中随机数参数的设置与实验分析[J]. 控制理论与应用, 2010, 27(11):1489-1496.Liu Z X, Liang H. Parameter setting and experimental analysis of the random number in particle swarm optimization algorithm[J]. Control Theory & Applications, 2010, 27(11):1489-1496. [36] 郑君君, 张平, 饶从军, 等. 基于Swarm的股权拍卖机制设计与仿真研究[J]. 系统工程理论与实践, 2014, 34(4):883-891.Zheng J J, Zhang P, Rao C J, et al. Research on mechanism design and simulation of equity auction based on swarm[J]. Systems Engineering-Theory & Practice, 2014, 34(4):883-891.