Abstract:Using SFA model to decompose and modify the offset of the sample input, and introducing the Malmquist index to improve the operating performance model, then, combined with Tobit model, which is taken into account the combination of environmental effect, random error and dynamic analysis, and the spatial and temporal heterogeneity and influence factors are introduced. Thus, this paper explores the heterogeneity and influence mechanisms of the patented innovations operational performance of knowledge-intensive manufacturing from the method and content. The results show that the patent innovation operational performance which is considering the environmental effect and random error is significantly different, and the environmental factors have a temporal and spatial heterogeneity in the patent innovation operational performance; The adjusted patent innovation operational performance is a double fluctuation, and the difference is obvious in each period; After the adjustment, the growth rate of the patent innovation operational performance is relatively large, and the technical level index is improved in different degrees, which is the main driving force for the improvement of the patent innovation operational performance; Government support has a significant positive effect on the patent innovation operational performance of knowledge-intensive manufacturing, and intellectual property protection have a significant inhibitory effect, and the market competition, enterprise scale and technology digestion and absorption capacity are not obvious to promote the patent innovation operational performance.
[1] 陈伟, 沙蓉, 张永超, 等. 我国知识密集型产业专利创新绩效评价研究——基于DEA-Malmquist指数方法[J]. 管理评论, 2013, 25(8):39-45.Chen W, Sha R, Zhang Y C, et al. Evaluation research on the patent innovation efficiency of China's knowledge intensive industry based on DEA-Malmquist index approach[J]. Management Review, 2013, 25(8):39-45. [2] OECD. The knowledge based economy[R]. OECD/GD, 1996. [3] 陈伟, 康鑫, 冯志军. 区域高技术产业知识产权运营效率研究——基于DEA和TOPSIS模型的实证分析[J]. 科学学与科学技术管理, 2011, 32(11):125-130.Chen W, Kang X, Feng Z J. Research on the regional high-tech industries operation efficiency of intellectual property based on the perspective of DEA-TOPSIS[J]. Science of Science and Management of S. & T., 2011, 32(11):125-130. [4] Charnes A, Cooper W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6):429-444. [5] Samoilenko S, Osei-Bryson K M. Using data envelopment analysis (DEA) for monitoring efficiency-based performance of productivity-driven organizations:Design and implementation of a decision support system[J]. Omega, 2013, 41(1):131-142. [6] 赵树宽, 余海晴, 巩顺龙. 基于DEA方法的吉林省高技术企业创新效率研究[J]. 科研管理, 2013, 34(2):36-43.Zhao S K, Yu H Q, Gong S L. The innovation efficiency of hi-tech enterprises in Jilin Province based on DEA method[J]. Science Research Management, 2013, 34(2):36-43. [7] 徐建中, 曲小瑜. 装备制造业环境技术创新效率及其影响因素研究——基于DEA-Malmquist和Tobit的实证分析[J]. 运筹与管理, 2015, 24(1):246-254.Xu J Z, Qu X Y. Research on the efficiency and influencing factors of environmental technology innovation of equipment manufacturing industries[J]. Operations Research and Management Science, 2015, 24(1):246-254. [8] Chen C J, Wu H L, Lin B W. Evaluating the development of high-tech industries:Taiwan's science park[J]. Technological Forecasting and Social Change, 2006, 73(4):452-465. [9] Aigner D, Lovell C K, Schmidt P. Formulation and estimation of stochastic frontier production function models[J]. Journal of Econometrics, 1977, 6(1):21-37. [10] Gong B H, Sickles R C. Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data[J]. Journal of Econometrics, 1992, 51(1-2):259-284. [11] Bosworth D, Rogers M. Market value, R&D and intellectual property:An empirical analysis of large Australian firms[J]. The Economic Record, 2001, 77(239):323-37. [12] 肖仁桥, 钱丽, 陈忠卫. 中国高技术产业创新效率及其影响因素研究[J]. 管理科学, 2012, 25(5):85-98.Xiao R Q, Qian L, Chen Z W. Research on the innovation efficiency and its affecting factors in China's high-tech industries[J]. Journal of Management Science, 2012, 25(5):85-98. [13] 田家林, 顾晓燕. 基于创新主体视角的区域知识产权运营效率提升对策[J]. 科学学与科学技术管理, 2014, 35(12):62-70.Tian J L, Gu X Y. Research on the promotion strategy of regional intellectual property operation efficiency from the perspective of innovation body[J]. Science of Science and Management of S. & T., 2014, 35(12):62-70. [14] Fried H O, Lovell C A K, et al. Accounting for environmental effects and statistical data envelopment analysis[J]. Journal of Productivity Analysis, 2002, 17(1-2):157-174. [15] 白俊红, 蒋伏心. 考虑环境因素的区域创新效率研究——基于三阶段DEA方法[J]. 财贸经济, 2011(10):104-112.Bai J H, Jiang F X. Research on regional innovation efficiency with environment factors:Based on three-stage DEA model[J]. Finance & Trade Economics, 2011(10):104-112. [16] Malmquist S. Index numbers and indifference surfaces[J]. Trabajos de Estatistica, 1953, 4(2):209-242. [17] Caves D W, Christensen L R, Diewert W E. The economic theory of index numbers and the measurement of input and output, and productivity[J]. Econometrica, 1982, 50(6):1938-1414. [18] Fare R, Grosskopf S, Norris M, et al. Productivity growth, technical progress and efficiency changes in industrialized countries[J]. American Economic Review, 1994, 84(1):66-83. [19] 张宇峰. 上市公司高管薪酬激励效率研究[D]. 长沙:中南林业科技大学, 2012.Zhang Y F. Research on executive compensation incentive efficiency of listing Corporation[D]. Changsha:Central South University of Forestry and Technology, 2012. [20] Jondrow J, Lovell C A K, Matcrov l S. On the estimation of technical inefficiency in the stochastic frontier production function model[J]. Journal of Econometrics, 1982(19):233-238. [21] Guan J C, Gao X. Exploring the H-index at patent level[J]. Journal of the American Society for Information Science and Technology, 2009, 60(1):35-40. [22] Liu X H, Buck T. Innovation performance and channels for international technology spillovers:Evidence from Chinese high-tech industries[J]. Research Policy, 2007, 36(3):355-366. [23] Giuseppe D V. The TRIPs agreement and technological innovation[J]. Journal of Policy Modeling, 2013, 35(6):964-977. [24] Hu M, Mathews J. China's national innovative capacity[J]. Research Policy, 2008, 37(9):1465-1479. [25] Gangopadhyay K, Mondal D. Does stronger protection of intellectual property right stimulate innovation?[J]. Economics Letters, 2012, 116(1):80-82. [26] 刘思明, 侯鹏, 赵彦云. 知识产权保护与中国工业创新能力——来自省级大中型工业企业面板数据的实证研究[J]. 数量经济技术经济研究, 2015(3):40-57.Liu S M, Hou P, Zhao Y Y. Protection of intellectual property right and innovation capacity of China's industry[J]. The Journal of Quantitative & Technical Economics, 2015(3):40-57. [27] 许春明, 单晓光. 中国知识产权保护强度指标体系的构建及验证[J]. 科学学研究, 2008, 26(4):715-723.Xu C M, Shan X G. Constructing of index system and verification for the intensity of intellectual property protection in China[J]. Studies in Science of Science, 2008, 26(4):715-723. [28] Schumpeter J A. Capitalism, socialism and democracy[M]. London:George, 1943. [29] Arrow K J. Economic welfare and the allocation of resources for invention[M]. Princeton:Princeton University Press, 1962. [30] Czarnitzki D, Licht G. Additionality of public R&D grants in a transition economic:The case of eastern Germany[J]. Economics of Transition, 2005, 14(1):101-131. [31] Scherer F M, Ross D. Industrial market structure and economic performance[M]. Boston:Houghton Mifflin Company, 1990. [32] 朱有为, 徐康宁. 中国高技术产业研发效率的实证研究[J]. 中国工业经济, 2006(11):38-45.Zhu Y W, Xu K N. The empirical research on R&D efficiency of Chinese high-tech industries[J]. China Industrial Economy, 2006(11):38-45. [33] Hu Albert G, Gary H J. Returns to research and development in Chinese industry:Evidence from state-owned enterprises in Beijing[J]. China Economic Review, 2004, 15(1):86-107. [34] 陈伟, 杨早立, 周文, 等. 基于突变级数的知识密集型制造业技术创新能力动态综合评价——变化速度特征的视角[J]. 运筹与管理, 2015, 24(1):191-201.Chen W, Yang Z L, Zhou W, et al. Dynamic comprehensive evaluation on technological innovative ability of knowledge-intensive manufactures based on catastrophe progression——Perspective of change speed[J]. Operations Research and Management Science, 2015, 24(1):191-201. [35] 刘伟. 中国高新技术产业研发创新效率测算——基于三阶段DEA模型[J]. 数理统计与管理, 2015, 34(1):17-28.Liu W. Measurement on innovation efficiency of hi-tech industries in China——Based on three-stage DEA model[J]. Journal of Applied Statistics and Management, 2015, 34(1):17-28. [36] Pathak S, Xavier O E, André O L. Influence of intellectual property, foreign investment, and technological adoption on technology entrepreneurship[J]. Journal of Business Research, 2013, 66(10):2090-2101.