1. School of Management and Economics, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; 2. School of Management, University of Science and Technology of China, Hefei 230026, China; 3. Department of Marketing and International Business, Faculty of Business, Lingnan University, Hong Kong 999077, China
Abstract:As the capability of tracking consumer footprint is enhanced, marketing science is experiencing a revolution of big data. In order to understand the changes in consumer behavior and marketing strategy under big data era, this paper collects relevant literature on big data marketing in the past decade, sorts out the related concepts, types and analytical methodsp, and extracts top 50 popular subjects of big data marketing such as search, mobile, word-of-mouth, digitization, APP and social media. Based on these findings, we review the research progress of big data marketing through four stages including Internet, social network, mobile Internet, big data and artificial intelligence. In the end, the future research direction of big data marketing is discussed from the three aspects regarding customer journey, quantitative evaluation of marketing activities, and development of marketing analytics technology.
杨扬, 刘圣, 李宜威, 贾建民. 大数据营销:综述与展望[J]. 系统工程理论与实践, 2020, 40(8): 2150-2158.
YANG Yang, LIU Sheng, LI Yiwei, JIA Jianmin. Big data marketing: Review and prospect. Systems Engineering - Theory & Practice, 2020, 40(8): 2150-2158.
[1] Wedel M, Kannan P K. Marketing analytics for data-rich environments[J]. Journal of Marketing, 2016, 80(6):97-121. [2] 新浪科技. 2684亿元! 2019天猫双11最终成交额最破记录[EB/OL].[2020-06-01]. https://tech.sina.com.cn/i/2019-11-12/doc-iihnzhfy8572922.shtml. [3] Kotler P, Kartajaya H, Setiawan I. Marketing 4.0:Moving from traditional to digital[M]. John Wiley & Sons, 2016. [4] 贾建民, 耿维, 徐戈, 等. 大数据行为研究趋势:一个"时空关"的视角[J]. 管理世界, 2020(2):106-212. Jia J M, Geng W, Xu G, et al. Big data behavioral research trends:A time-space-connection perspective[J]. Journal of Management World, 2020(2):106-212. [5] Laney D. 3D data management:Controlling data volume, velocity and variety[J]. META Group Research Note, 2001, 6:70-73. [6] Chintagunta P, Hanssens D M, Hauser J R. Marketing science and big data[J]. Marketing Science, 2016, 35:341-342. [7] Lau R Y, Zhao J L, Chen G Q, et al. Big data commerce[J]. Information & Management, 2016, 53(8):929-933. [8] Balducci B, Marinova D. Unstructured data in marketing[J]. Journal of the Academy of Marketing Science, 2018, 46(4):557-590. [9] Berger J, Humphreys A, Ludwig S, et al. Uniting the tribes:Using text for marketing insight[J]. Journal of Marketing, 2020, 84(1):1-25. [10] Gilula Z, McCulloch R E, Rossi P E. A direct approach to data fusion[J]. Journal of Marketing Research, 2006, 43(1):73-83. [11] Varian H R. Big data:New tricks for econometrics[J]. Journal of Economic Perspectives, 2014, 28(2):3-28. [12] Bijmolt T H A, Van Heerde H J, Pieters R G M. New empirical generalizations on the determinants of price elasticity[J]. Journal of Marketing Research, 2005, 42(2):141-156. [13] Goodstein R C. UPC scanner pricing systems:Are they accurate?[J]. Journal of Marketing, 1994, 58(2):20-30. [14] Guadagni P M, Little J D C. A logit model of brand choice calibrated on scanner data[J]. Marketing Science, 1983, 2(3):203-238. [15] Christen M, Gupta S, Porter J C, et al. Using market-level data to understand promotion effects in a nonlinear model[J]. Journal of Marketing Research, 1997, 34(3):322-334. [16] Hamilton R, Ferraro R, Haws K L, et al. Traveling with companions:The social customer journey[J]. Journal of Marketing, 2020. https://doi.org/10.1177/0022242920908227. [17] Montgomery A L, Li S, Srinivasan K, et al. Modeling online browsing and path analysis using clickstream data[J]. Marketing Science, 2004, 23(4):579-595. [18] Park Y H, Fader P S. Modeling browsing behavior at multiple websites[J]. Marketing Science, 2004, 23(3):280-303. [19] Kim J B, Albuquerque P, Bronnenberg B J. Mapping online consumer search[J]. Journal of Marketing Research, 2011, 48(1):13-27. [20] Du X, Su M, Zhang X, et al. Bidding for multiple keywords in sponsored search advertising:Keyword categories and match types[J]. Information Systems Research, 2017, 28(4):711-722. [21] Ghose A, Ipeirotis P G, Li B. Modeling consumer footprints on search engines:An interplay with social media[J]. Management Science, 2019, 65(3):1363-1385. [22] Chevalier J A, Mayzlin D. The effect of word of mouth on sales:Online book reviews[J]. Journal of Marketing Research, 2006, 43(3):345-354. [23] Zhu F, Zhang X. Impact of online consumer reviews on sales:The moderating role of product and consumer characteristics[J]. Journal of Marketing, 2010, 74(2):133-148. [24] Iyengar R, Van den Bulte C, Lee J Y. Social contagion in new product trial and repeat[J]. Marketing Science, 2015, 34(3):408-429. [25] Iyengar R, Van den Bulte C, Valente T W. Opinion leadership and social contagion in new product diffusion[J]. Marketing Science, 2011, 30(2):195-212. [26] Toubia O, Stephen A T. Intrinsic vs. image-related utility in social media:Why do people contribute content to twitter?[J]. Marketing Science, 2013, 32(3):368-392. [27] Li Y, Xie Y. Is a picture worth a thousand words? An empirical study of image content and social media engagement[J]. Journal of Marketing Research, 2020, 57(1):1-19. [28] Luo X, Zhang J, Duan W. Social media and firm equity value[J]. Information Systems Research, 2013, 24(1):146-163. [29] Kumar A, Bezawada R, Rishika R, et al. From social to sale:The effects of firm-generated content in social media on customer behavior[J]. Journal of Marketing, 2016, 80(1):7-25. [30] Zhang Y, Trusov M, Stephen A T, et al. Online shopping and social media:Friends or foes?[J]. Journal of Marketing, 2017, 81(6):24-41. [31] Lanz A, Goldenberg J, Shapira D, et al. Climb or jump:Status-based seeding in user-generated content networks[J]. Journal of Marketing Research, 2019, 56(3):361-378. [32] Rishika R, Ramaprasad J. The effects of asymmetric social ties, structural embeddedness, and tie strength on online content contribution behavior[J]. Management Science, 2019, 65(7):3398-3422. [33] Zhong N, Schweidel D A. Capturing changes in social media content:A multiple latent changepoint topic model[J]. Marketing Science, 2020. https://doi.org/10.1287/mksc.2019.1212. [34] Lee D, Hosanagar K, Nair H S. Advertising content and consumer engagement on social media:Evidence from Facebook[J]. Management Science, 2018, 64(11):5105-5131. [35] 中国互联网络信息中心. 第45次《中国互联网络发展状况统计报告》[EB/OL].[2020-06-01]. http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/202004/P020200428596599037028.pdf. [36] Xu J, Forman C, Kim J B, et al. News media channels:Complements or substitutes? Evidence from mobile phone usage[J]. Journal of Marketing, 2014, 78(4):97-112. [37] Lamberton C, Stephen A T. A thematic exploration of digital, social media, and mobile marketing:Research evolution from 2000 to 2015 and an agenda for future inquiry[J]. Journal of Marketing, 2016, 80(6):146-172. [38] Andrews M, Luo X, Fang Z, et al. Mobile ad effectiveness:Hyper-contextual targeting with crowdedness[J]. Marketing Science, 2016, 35(2):218-233. [39] Bart Y, Stephen A T, Sarvary M. Which products are best suited to mobile advertising? A field study of mobile display advertising effects on consumer attitudes and intentions[J]. Journal of Marketing Research, 2014, 51(3):270-285. [40] Fong N M, Fang Z, Luo X. Geo-conquesting:Competitive locational targeting of mobile promotions[J]. Journal of Marketing Research, 2015, 52(5):726-735. [41] Li C, Luo X, Zhang C, et al. Sunny, rainy, and cloudy with a chance of mobile promotion effectiveness[J]. Marketing Science, 2017, 36(5):762-779. [42] Gill M, Sridhar S, Grewal R. Return on engagement initiatives:A study of a business-to-business mobile app[J]. Journal of Marketing, 2017, 81(4):45-66. [43] Boyd D E, Kannan P K, Slotegraaf R J. Branded apps and their impact on firm value:A design perspective[J]. Journal of Marketing Research, 2019, 56(1):76-88. [44] Liu X, Lee D, Srinivasan K. Large-scale cross-category analysis of consumer review content on sales conversion leveraging deep learning[J]. Journal of Marketing Research, 2019, 56(6):918-943. [45] Hu M, Dang C, Chintagunta P K. Search and learning at a daily deals website[J]. Marketing Science, 2019, 38(4):609-642. [46] Timoshenko A, Hauser J R. Identifying customer needs from user-generated content[J]. Marketing Science, 2019, 38(1):1-20. [47] Netzer O, Lemaire A, Herzenstein M. When words sweat:Identifying signals for loan default in the text of loan applications[J]. Journal of Marketing Research, 2019, 56(6):960-980.