Study on evolutionary games and cooperation mechanism within the framework of bounded rationality
WANG Xian-jia1,2, QUAN Ji2, LIU Wei-bing3
1. School of Economics and Management, Wuhan University, Wuhan 430072, China;
2. Institute of Systems Engineering, Wuhan University, Wuhan 430072, China;
3. School of Political Science and Public Management, Wuhan University, Wuhan 430072, China
Abstract:This paper gives the theory defects of the traditional game theory and Nash equilibrium solution under the assumption of fully rationality, thus introduces evolutionary game theory, which is in the framework of bounded rationality. It describes the evolutionary thinking of strategies in evolutionary games, proposes that the essence of bounded rationality is learning, and then explores variety learning models in the evolutionary games. It introduces the agent-based learning models and progress in evolutionary games on networks; proposes the idea of explaining some complex network structure in reality using evolutionary game theory; analyzes the coevolutionary thinking of network structure and strategies in games. It discusses progress in mechanisms for the evolution of cooperation in the framework of evolutionary games. Finally, some comments are given for the development trends and the future research directions of the evolutionary games.
王先甲, 全吉, 刘伟兵. 有限理性下的演化博弈与合作机制研究[J]. 系统工程理论与实践, 2011, 31(专刊1): 82-93.
WANG Xian-jia, QUAN Ji, LIU Wei-bing. Study on evolutionary games and cooperation mechanism within the framework of bounded rationality. Systems Engineering - Theory & Practice, 2011, 31(专刊1): 82-93.
[1] Von Neumann J, Morgenstern O. Theory of Games and Economic Behavior[M]. Princeton University Press, Princeton, 1944.[2] Nash J F. The bargaining problem[J]. Econometrica, 1950, 18(2): 155-162.[3] Nash J F. Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36: 48-49.[4] Nash J F. Non-cooperative games[J]. Annals of Mathematics, 1951, 54(2): 289-295.[5] Nash J. Two-person cooperative games[J]. Econometrica, 1953, 21(1): 128-140.[6] Binmore K. Modeling rational players I[J]. Economics and Philosophy, 1987, 3(2): 179-214.[7] Binmore K. Modelling rational players II[J]. Economics and Philosophy, 1988, 4(1): 9-55.[8] Maynard Smith J, Price G R. The logic of animal conflict[J]. Nature, 1973, 246: 15-18.[9] Taylor P D, Jonker L B. Evolutionary stable strategies and game dynamics[J]. Mathematical Biosciences, 1978, 40(1/2): 145-156.[10] Maynard Smith J. Evolution and the Theory of Games[M]. Cambridge University, Cambridge, 1982.[11] Weibull J W. Evolutionary Game Theory[M]. The MIT, Cambridge, 1995.[12] Hofbauer J, Sigmund K. Evolutionary Games and Population Dynamics[M]. Cambridge University, Cambridge, 1998.[13] Sigmund K, Hauert C, Nowak M A. Reward and punishment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10757-10762.[14] Nowak M A, Sigmund K. Evolutionary dynamics of biological games[J]. Science, 2004, 303(5659): 793-799.[15] Rohl T, Rohl C, Schuster H G, et al. Impact of fraud on the mean-field dynamics of cooperative social systems[J]. Physical Review E, 2007, 76(2): 026114.[16] 卢方元. 环境污染问题的演化博弈分析[J]. 系统工程理论与实践 2007, 27(9): 148-152. Lu F Y. Evolutionary game analysis on environmental pollution problem[J]. Systems Engineering — Theory & Practice, 2007, 27(9): 148-152.[17] 王玉燕, 李帮义, 申亮. 两个生产商的逆向供应链演化博弈分析[J]. 系统工程理论与实践, 2008, 28(4): 43-49. Wang Y Y, Li B Y, Shen L. A study of the evolutionary game of two manufacturer's reverse supply chain[J]. Systems Engineering — Theory & Practice, 2008, 28(4): 43-49.[18] 陈学梅, 孟卫东, 胡大江. 国际合资企业中机会主义行为的演化博弈[J]. 系统工程理论与实践, 2009, 29(2): 53-62. Chen X M, Meng W D, Hu D J. Evolutionary game analysis on opportunistic behavior in international joint venture[J]. Systems Engineering — Theory & Practice, 2009, 29(2): 53-62.[19] Hutson V C L, Vickers G T. Travelling waves and dominance of ESS's[J]. Journal of Mathematical Biology, 1992, 30: 457-471.[20] Cressman R, Vickers G T. Spatial and density effects in evolutionary game theory[J]. Journal of Theoretical Biology, 1997, 184: 359-369.[21] Foster D, Young P. Stochastic evolutionary game dynamics[J]. Theoretical Population Biology, 1990, 38(2): 219-232.[22] Fudenberg D, Harris C. Evolutionary dynamics with aggregate shocks[J]. Journal of Economic Theory, 1992, 57(2): 420-441.[23] Binmore K, Samuelson L, Vaughan R. Musical chairs: Modeling noisy evolution[J]. Games and Economic Behavior, 1995, 11(1): 1-35.[24] Binmore K, Samuelson L. Muddling through: Noisy equilibrium selection[J]. Journal of Economic Theory, 1997, 74(2): 235-265.[25] Corradi V, Sarin R. Continuous approximations of stochastic evolutionary game dynamics[J]. Journal of Economic Theory, 2000, 94(2): 163-191.[26] Imhof L A. The long-run behavior of the stochastic replicator dynamics[J]. The Annals of Applied Probability, 2005, 15(1B): 1019-1045.[27] Gilboa I, Matsui A. Social stability and equilibrium[J]. Econometrica, 1991, 59(3): 859-867.[28] Fudenberg D, Levine D. Learning in games[J]. European Economic Review, 1998, 42(3-5): 631-639.[29] Brown G W, Von Neumann J. Solutions of games by differential equations[J]. Annals of Mathematics Studies, 1950, 24: 73-79.[30] Nikaido H. Stability of equilibrium by the Brown-von Neumann differential equation[J]. Econometrica, 1959, 27(4): 654-671.[31] Berger U, Hofbauer J. Irrational behavior in the Brown-von Neumann-Nash dynamics[J]. Games and Economic Behavior, 2006, 56(1): 1-6.[32] Smith M J. Stability of a dynamic model of traffic assignment — An application of a method of Lyapunov[J]. Transportation Science, 1984, 18(3): 245-252.[33] Kandori M, Mailath G J, Rob R. Learning, mutation, and long run equilibria in games[J]. Econometrica, 1993, 61: 29-56.[34] Amir M, Berninghaus S K. Another approach to mutation and learning in games[J]. Games and Economic Behavior, 1996, 14: 19-43.[35] Tadj L, Touzene A. A QBD approach to evolutionary game theory[J]. Applied Mathematical Modelling, 2003, 27: 913-927.[36] 余谦, 王先甲. 基于拟生灭过程的随机支付2×2双矩阵博弈演化模型[J]. 系统工程理论与实践 2007, 27(3): 56-62. Yu Q, Wang X J. Evolutionary game method based on QBD for 2×2 bimatrix game with stochastic payoffs[J]. Systems Engineering — Theory & Practice, 2007, 27(3): 56-62.[37] Nowak M A, Sasaki A, Taylor C, et al. Emergence of cooperation and evolutionary stability in finite populations[J]. Nature, 2004, 428(6983): 646-650.[38] Moran P A P. The Statistical Processes of Evolutionary Theory[M]. Clarendon, Oxford, 1962.[39] Taylor C, Fudenberg D, Sasaki A, et al. Evolutionary game dynamics in finite populations[J]. Bulletin of Mathematical Biology, 2004, 66(6): 1621-1644.[40] Traulsen A, Claussen J C, Hauert C. Coevolutionary dynamics: From finite to infinite populations[J]. Physical Review Letters, 2005, 95(23): 238701.[41] Ohtsuki H, Nowak M A, Pacheco J M. Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs[J]. Physical Review Letters, 2007, 98(10): 108106.[42] Wild G, Traulsen A. The different limits of weak selection and the evolutionary dynamics of finite populations[J]. Journal of Theoretical Biology, 2007, 247(2): 382-390.[43] Altrock P M, Traulsen A. Fixation times in evolutionary games under weak selection[J]. New Journal of Physics, 2009, 11(1): 013012.[44] Fu F, Wang L, Nowak M A, et al. Evolutionary dynamics on graphs: Efficient method for weak selection[J]. Physical Review E, 2009, 79(4): 046707.[45] Traulsen A, Shoresh N, Nowak M A. Analytical results for individual and group selection of any intensity[J]. Bulletin of Mathematical Biology, 2008, 70(5): 1410-1424.[46] Claussen J C, Traulsen A. Non-Gaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process[J]. Physical Review E, 2005, 71(2): 025101.[47] Traulsen A, Pacheco J M, Imhof L A. Stochasticity and evolutionary stability[J]. Physical Review E, 2006, 74(2): 021905.[48] Traulsen A, Nowak M A, Pacheco J M. Stochastic dynamics of invasion and fixation[J]. Physical Review E, 2006, 74(1): 011909.[49] Antal T, Nowak M A, Traulsen A. Strategy abundance in 2×2 games for arbitrary mutation rates[J]. Journal of Theoretical Biology, 2009, 257(2): 340-344.[50] Antal T, Traulsen A, Ohtsuki H, et al. Mutation-selection equilibrium in games with multiple strategies[J]. Journal of Theoretical Biology, 2009, 258(4): 614-622.[51] Quan J, Wang X J. Evolutionary games in a generalized Moran process with arbitrary selection strength and mutation[J]. Chinese Physics B, 2011, 20(3): 030203.[52] Imhof L A, Nowak M A. Evolutionary game dynamics in a Wright-Fisher process[J]. Journal of Mathematical Biology, 2006, 52(5): 667-681.[53] Arifovic J. Genetic algorithm learning and the cobweb model[J]. Journal of Economic Dynamics and Control, 1994, 18(1): 3-28.[54] Birchenhall C, Kastrinos N, Metcalfe S. Genetic algorithms in evolutionary modelling[J]. Journal of Evolutionary Economics, 1997, 7(4): 375-393.[55] Riechmann T. Genetic algorithm learning and evolutionary games[J]. Journal of Economic Dynamics and Control, 2001, 25(6/7): 1019-1037.[56] Tekol Y, Acan A. Ants can play prisoner's dilemma[C]// The 2003 Congress on Evolutionary Computation, 2003: 1348-1354.[57] Liu W B, Wang X J. An evolutionary game based particle swarm optimization algorithm[J]. Journal of Computational and Applied Mathematics, 2008, 214(1): 30-35.[58] Messerschmidt L, Engelbrecht A P. Learning to play games using a PSO-based competitive learning approach[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 280-288.[59] Franken N, Engelbrecht A P. Particle swarm optimization approaches to coevolve strategies for the iterated prisoner's dilemma[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(6): 562-579.[60] Horie R, Aiyoshi E. Neural networks realization of searching models for Nash equilibrium points and their application to associative memories[C]// 1998 IEEE International Conference on Systems, Man, and Cybernetics, 1998: 1886-1891.[61] Taiji M, Ikegami T. Dynamics of internal models in game players[J]. Physica D: Nonlinear Phenomena, 1999, 134(2): 253-266.[62] Harrald P G, Fogel D B. Evolving continuous behaviors in the Iterated Prisoner's Dilemma[J]. BioSystems, 1996, 37(1/2): 135-145.[63] Roth A E, Erev I, Fudenberg D, et al. Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term[J]. Games and Economic Behavior, 1995, 8: 164-212.[64] Sarin R, Vahid F. Predicting how people play games: A simple dynamic model of choice[J]. Games and Economic Behavior, 2001, 34(1): 104-122.[65] Laslier J F, Walliser B. A reinforcement learning process in extensive form games[J]. International Journal of Game Theory, 2005, 33(2): 219-227.[66] 刘伟兵, 王先甲. 进化博弈中多代理人强化学习模型[J]. 系统工程理论与实践, 2009, 29(3): 28-33. Liu W B, Wang X J. Multiagent reinforcement learning-model in evolutionary games[J]. Systems Engineering — Theory & Practice, 2009, 29(3): 28-33.[67] Crawford V P. Adaptive dynamics in coordination games[J]. Econometrica, 1995, 63(1): 103-143.[68] Cheung Y W, Friedman D. Individual learning in normal form games: Some laboratory results[J]. Games and Economic Behavior, 1997, 19(1): 46-76.[69] Milgrom P, Roberts J. Adaptive and sophisticated learning in normal form games[J]. Games and Economic Behavior, 1991, 3(1): 82-100.[70] Jordan J S. Bayesian learning in normal form games[J]. Games and Economic Behavior, 1991, 3(1): 60-81.[71] Eichberger J, Haller H, Milne F. Naive Bayesian learning in 2×2 matrix games[J]. Journal of Economic Behavior & Organization, 1993, 22(1): 69-90.[72] Camerer C, Ho T H. Experience-weighted attraction learning in coordination games: Probability rules, heterogeneity, and time-variation[J]. Journal of Mathematical Psychology, 1998, 42(2/3): 305-326.[73] Camerer C, Ho T H. Experience-weighted attraction learning in normal form games[J]. Econometrica, 1999, 67(4): 827-874.[74] Camerer C F, Ho T H, Chong J K. Sophisticated experience-weighted attraction learning and strategic teaching in repeated games[J]. Journal of Economic Theory, 2002, 104(1): 137-188.[75] Anderson C M, Camerer C F. Experience-weighted attraction learning in sender-receiver signaling games[J]. Economic Theory, 2000, 16(3): 689-718.[76] Ho T H, Camerer C F, Chong J K. Self-tuning experience weighted attraction learning in games[J]. Journal of Economic Theory, 2007, 133(1): 177-198.[77] Nowak M A, Robert M M. Evolutionary games and spatial chaos[J]. Nature, 1992, 359(6398): 826-829.[78] Abramson G, Kuperman M. Social games in a social network[J]. Physical Review E, 2001, 63(3): 030901.[79] Szabo G, Hauert C. Phase transitions and volunteering in spatial public goods games[J]. Physical Review Letters, 2002, 89(11): 118101.[80] Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game[J]. Nature, 2004, 428(6983): 643-646.[81] Lieberman E, Hauert C, Nowak M A. Evolutionary dynamics on graphs[J]. Nature, 2005, 433(7023): 312-316.[82] Santos F C, Pacheco J M. Scale-free networks provide a unifying framework for the emergence of cooperation[J]. Physical Review Letters, 2005, 95(9): 098104.[83] Santos F C, Pacheco J M, Lenaerts T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9): 3490-3494.[84] Ohtsuki H, Hauert C, Lieberman E, et al. A simple rule for the evolution of cooperation on graphs and social networks[J]. Nature, 2006, 441(7092): 502-505.[85] Taylor P D, Day T, Wild G. Evolution of cooperation in a finite homogeneous graph[J]. Nature, 2007, 447(7143): 469-472.[86] Santos F C, Santos M D, Pacheco J M. Social diversity promotes the emergence of cooperation in public goods games[J]. Nature, 2008, 454(7201): 213-216.[87] Perc M, Szolnoki A. Social diversity and promotion of cooperation in the spatial prisoner's dilemma game[J]. Physical Review E, 2008, 77(1): 011904.[88] Devlin S, Treloar T. Cooperation in an evolutionary prisoner's dilemma on networks with degree-degree correlations[J]. Physical Review E, 2009, 80(2): 026105.[89] Devlin S, Treloar T. Evolution of cooperation through the heterogeneity of random networks[J]. Physical Review E, 2009, 79(1): 016107.[90] Roca C P, Cuesta J A, Sanchez A. Effect of spatial structure on the evolution of cooperation[J]. Physical Review E, 2009, 80(4): 046106.[91] Masuda N, Aihara K. Spatial prisoner's dilemma optimally played in small-world networks[J]. Physics Letters A, 2003, 313(1/2): 55-61.[92] Assenza S, Gomez-Gardenes J, Latora V. Enhancement of cooperation in highly clustered scale-free networks[J]. Physical Review E, 2008, 78(1): 017101.[93] Bo X Y, Yang J M. Evolutionary ultimatum game on complex networks under incomplete information[J]. Physica A — Statistical Mechanics and Its Applications, 2010, 389(5): 1115-1123.[94] Bo X Y. Other-regarding preference and the evolutionary prisoner's dilemma on complex networks[J]. Physica A — Statistical Mechanics and Its Applications, 2010, 389(5): 1105-1114.[95] Alonso-Sanz R. Memory versus spatial disorder in the support of cooperation[J]. BioSystems, 2009, 97(2): 90-102.[96] Alonso-Sanz R, Martin M C, Martin M. The effect of memory in the spatial continuous-valued prisoner's dilemma[J]. International Journal of Bifurcation and Chaos, 2001, 11(8): 2061-2083.[97] Liu Y K, Li Z, Chen X J, et al. Memory-based prisoner's dilemma on square lattices[J]. Physica A — Statistical Mechanics and Its Applications, 2010, 389(12): 2390-2396.[98] Qin S M, Chen Y, Zhao X Y, et al. Effect of memory on the prisoner's dilemma game in a square lattice[J]. Physical Review E, 2008, 78(4): 041129.[99] Wang W X, Ren J, Chen G R, et al. Memory-based snowdrift game on networks[J]. Physical Review E, 2006, 74(5): 056113.[100] Szabo G, Toke C. Evolutionary prisoner's dilemma game on a square lattice[J]. Physical Review E, 1998, 58(1): 69-73.[101] Szabo G, Antal T, Szabo P, et al. Spatial evolutionary prisoner's dilemma game with three strategies and external constraints[J]. Physical Review E, 2000, 62(1): 1095-1103.[102] Szabo G, Hauert C. Evolutionary prisoner's dilemma games with voluntary participation[J]. Physical Review E, 2002, 66(6): 062903.[103] Szabo G, Vukov J, Szolnoki A. Phase diagrams for an evolutionary prisoner's dilemma game on two-dimensional lattices[J]. Physical Review E, 2005, 72(4): 047107.[104] Vukov J, Szabo G. Evolutionary prisoner's dilemma game on hierarchical lattices[J]. Physical Review E, 2005, 71(3): 036133.[105] Vukov J, Szabo G, Szolnoki A. Cooperation in the noisy case: Prisoner's dilemma game on two types of regular random graphs[J]. Physical Review E, 2006, 73(6): 067103.[106] Szolnoki A, Perc M, Szabo G, et al. Impact of aging on the evolution of cooperation in the spatial prisoner's dilemma game[J]. Physical Review E, 2009, 80(2): 021901.[107] Szolnoki A, Vukov J, Szabo G. Selection of noise level in strategy adoption for spatial social dilemmas[J]. Physical Review E, 2009, 80(5): 056112.[108] Droz M, Szwabinski J, Szabo G. Motion of influential players can support cooperation in prisoner's dilemma[J]. European Physical Journal B, 2009, 71(4): 579-585.[109] Perc M. Chaos promotes cooperation in the spatial prisoner's dilemma game[J]. Europhysics Letters, 2006, 75(6): 841-846.[110] Perc M. Transition from Gaussian to Levy distributions of stochastic payoff variations in the spatial prisoner's dilemma game[J]. Physical Review E, 2007, 75(2): 022101.[111] Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442.[112] Santos F C, Rodrigues J F, Pacheco J M. Epidemic spreading and cooperation dynamics on homogeneous small-world networks[J]. Physical Review E, 2005, 72(5): 056128.[113] Wu Z X, Xu X J, Huang Z G, et al. Evolutionary prisoner's dilemma game with dynamic preferential selection[J]. Physical Review E, 2006, 74(2): 021107.[114] Fu F, Liu L H, Wang L. Evolutionary prisoner's dilemma on heterogeneous Newman-Watts small-world network[J]. European Physical Journal B, 2007, 56(4): 367-372.[115] Newman M E J, Watts D J. Scaling and percolation in the small-world network model[J]. Physical Review E, 1999, 60(6): 7332-7342.[116] Tang C L, Wang W X, Wu X, et al. Effects of average degree on cooperation in networked evolutionary game[J]. European Physical Journal B, 2006, 53(3): 411-415.[117] Tomassini M, Luthi L, Giacobini M. Hawks and Doves on small-world networks[J]. Physical Review E, 2006, 73(1): 016132.[118] Shang L H, Li X, Wang X F. Cooperative dynamics of snowdrift game on spatial distance-dependent small-world networks[J]. European Physical Journal B, 2006, 54(3): 369-373.[119] Kleinberg J M. Navigation in a small world — It is easier to find short chains between points in some networks than others[J]. Nature, 2000, 406(6798): 845.[120] Zhong L X, Zheng D F, Zheng B, et al. Networking effects on cooperation in evolutionary snowdrift game[J]. Europhysics Letters, 2006, 76(4): 724-730.[121] Xu C, Hui P M, Zheng D F. Networking effects on evolutionary snowdrift game in networks with fixed degrees[J]. Physica A — Statistical Mechanics and Its Applications, 2007, 385(2): 773-780.[122] Santos F C, Rodrigues J F, Pacheco J M. Graph topology plays a determinant role in the evolution of cooperation[J]. Proceedings of the Royal Society B — Biological Sciences, 2006, 273(1582): 51-55.[123] Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.[124] Santos F C, Pacheco J M. A new route to the evolution of cooperation[J]. Journal of Evolutionary Biology, 2006, 19(3): 726-733.[125] Szolnoki A, Perc M, Danku Z. Towards effective payoffs in the prisoner's dilemma game on scale-free networks[J]. Physica A — Statistical Mechanics and Its Applications, 2008, 387(8/9): 2075-2082.[126] Szolnoki A, Perc M, Szabo G. Diversity of reproduction rate supports cooperation in the prisoner's dilemma game on complex networks[J]. European Physical Journal B, 2008, 61(4): 505-509.[127] Wang W X, Lue J H, Chen G R, et al. Phase transition and hysteresis loop in structured games with global updating[J]. Physical Review E, 2008, 77(4): 046109.[128] Jackson M O, Wolinsky A. A strategic model of social and economic networks[J]. Journal of Economic Theory, 1996, 71(1): 44-74.[129] Jackson M O, Watts A. On the formation of interaction networks in social coordination games[J]. Games and Economic Behavior, 2002, 41(2): 265-291.[130] Jackson M O, Watts A. The evolution of social and economic networks[J]. Journal of Economic Theory, 2002, 106(2): 265-295.[131] Jackson M O. Allocation rules for network games[J]. Games and Economic Behavior, 2005, 51(1): 128-154.[132] Bloch F, Jackson M O. Definitions of equilibrium in network formation games[J]. International Journal of Game Theory, 2006, 34(3): 305-318.[133] Bloch F, Jackson M O. The formation of networks with transfers among players[J]. Journal of Economic Theory, 2007, 133(1): 83-110.[134] Charness G, Jackson M O. Group play in games and the role of consent in network formation[J]. Journal of Economic Theory, 2007, 136(1): 417-445.[135] Jackson M O, Yariv L. Diffusion of behavior and equilibrium properties in network games[J]. American Economic Review, 2007, 97(2): 92-98.[136] Jackson M O. Networks and economic behavior[J]. Annual Review of Economics, 2009, 1(1): 489-513.[137] Zimmermann M G, Eguiluz V M, San Miguel M. Coevolution of dynamical states and interactions in dynamic networks[J]. Physical Review E, 2004, 69(6): 065102.[138] Zimmermann M G, Eguiluz V M. Cooperation, social networks, and the emergence of leadership in a prisoner's dilemma with adaptive local interactions[J]. Physical Review E, 2005, 72(5): 056118.[139] Pacheco J M, Traulsen A, Nowak M A. Coevolution of strategy and structure in complex networks with dynamical linking[J]. Physical Review Letters, 2006, 97(25): 258103.[140] Santos F C, Pacheco J M, Lenaerts T. Cooperation prevails when individuals adjust their social ties[J]. PLoS Computational Biology, 2006, 2(10): 1284-1291.[141] Pacheco J M, Traulsen A, Nowak M A. Active linking in evolutionary games[J]. Journal of Theoretical Biology, 2006, 243(3): 437-443.[142] Huang Z G, Wu Z X, Xu X J, et al. Coevolutionary dynamics of networks and games under birth-death and birth mechanisms[J]. European Physical Journal B, 2007, 58(4): 493-498.[143] Qin S M, Zhang G Y, Chen Y. Coevolution of game and network structure with adjustable linking[J]. Physica A — Statistical Mechanics and Its Applications, 2009, 388(23): 4893-4900.[144] Pennisi E. How did cooperative behavior evolve[J]. Science, 2005, 309(5731): 93.[145] Lotem A, Fishman M A, Stone L. Evolution of cooperation between individuals[J]. Nature, 1999, 400(6741): 226-227.[146] McNamara J M, Barta Z, Fromhage L, et al. The coevolution of choosiness and cooperation[J]. Nature, 2008, 451(7175): 189-192.[147] Nowak M A, Sigmund K. Evolution of indirect reciprocity[J]. Nature, 2005, 437(7063): 1291-1298.[148] Riolo R L, Cohen M D, Axelrod R. Evolution of cooperation without reciprocity[J]. Nature, 2001, 414(6862): 441-443.[149] Axelrod R, Hamilton W D. The evolution of cooperation[J]. Science, 1981, 211(4489): 1390-1396.[150] Hauert C, De Monte S, Hofbauer J, et al. Volunteering as Red Queen mechanism for cooperation in public goods games[J]. Science, 2002, 296(5570): 1129-1132.[151] Nowak M A. Five rules for the evolution of cooperation[J]. Science, 2006, 314(5805): 1560-1563.[152] Sinervo B, Clobert J. Morphs, dispersal behavior, genetic similarity, and the evolution of cooperation[J]. Science, 2003, 300(5627): 1949-1951.[153] Trivers R. Genetic and cultural evolution of cooperation[J]. Science, 2004, 304(5673): 964-965.[154] Rothstein S I, Pierotti R. Distinctions among reciprocal altruism, kin selection, and cooperation and a model for the initial evolution of beneficent behavior[J]. Ethology and Sociobiology, 1988, 9(2-4): 189-209.[155] Day T, Taylor P D. A generalization of Pontryagin's maximum principle for dynamic evolutionary games among relatives[J]. Theoretical Population Biology, 2000, 57(4): 339-356.[156] Taylor P D, Wild G, Gardner A. Direct fitness or inclusive fitness: How shall we model kin selection?[J]. Journal of Evolutionary Biology, 2007, 20(1): 301-309.[157] Smith J, Van Dyken J D, Zee P C. A generalization of Hamilton's rule for the evolution of microbial cooperation[J]. Science, 2010, 328(5986): 1700-1703.[158] Killingback T, Doebeli M. The continuous prisoner's dilemma and the evolution of cooperation through reciprocal altruism with variable investment[J]. American Naturalist, 2002, 160(4): 421-438.[159] Leimar O, Hammerstein P. Evolution of cooperation through indirect reciprocity[J]. Proceedings of the Royal Society of London Series B — Biological Sciences, 2001, 268(1468): 745-753.[160] Brandt H, Sigmund K. Indirect reciprocity, image scoring, and moral hazard[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(7): 2666-2670.[161] Ohtsuki H, Iwasa Y, Nowak M A. Indirect reciprocity provides only a narrow margin of efficiency for costly punishment[J]. Nature, 2009, 457(7225): 79-82.[162] Traulsen A, Nowak M A. Evolution of cooperation by multilevel selection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(29): 10952-10955.[163] Goodnight C J. Multilevel selection: The evolution of cooperation in non-kin groups[J]. Population Ecology, 2005, 47(1): 3-12.