Abstract:Large complex man-machine system is open, dynamical and complex organic whole, which is composed of human organizations and artificial systems. This paper firstly analyzes the background and meaning of the study on large complex man-machine system, and then summarizes the progress in related research fileds from the respects of structure, process and organization, respectively. Lastly, this paper presents the prospects of main research directions and key scientific problems for modeling of structure and process and design of organization.
谭跃进, 吴俊, 刘忠, 朱一凡. 大型复杂人机系统结构、过程建模与组织设计方法研究现状与展望[J]. 系统工程理论与实践, 2011, 31(专刊1): 73-81.
TAN Yue-jin, WU Jun, LIU Zhong, ZHU Yi-fan. Status and prospects on modeling of structure and process and design of organization in large complex man-machine systems. Systems Engineering - Theory & Practice, 2011, 31(专刊1): 73-81.
[1] Wagenhals L W, Shin I, Kim D. C4ISR architectures: III. A structured analysis approach for architecture design [J]. Systems Engineering, 2000, 3(4): 248-287. [2] Bienvenu M P, Shin I, Levis A H. C4ISR architectures: III. An object-oriented approach for architecture design[J]. Systems Engineering, 2000, 3(4): 288-312. [3] Erdö s P, Ré nyi A. On random graphs[J]. Publicationes Mathematicae Debrecen, 1959, 6: 290-297. [4] Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442. [5] Albert R, Jeong H, Barabá si A L. Internet-diameter of the world-wide web[J]. Nature, 1999, 401(6749): 130-131. [6] Barabá si A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. [7] 车宏安, 顾基发. 无标度网络及其系统科学意义[J]. 系统工程理论与实践, 2004, 24(4): 11-16. Che H A, Gu J F. Scale-free networks and their significance for systems science[J]. Systems Engineering — Theory & Practice, 2004, 24(4): 11-16. [8] 陈禹. 人类对于网络的认识的新发展[J]. 系统辩证学报, 2005, 13(4): 18-22. Chen Y. New progress on the network for the human being[J]. Journal of Systemic Dialectics, 2005, 13(4): 18-22.[9] 史定华. 网络——探索复杂性的新途径[J]. 系统工程学报, 2005, 20(2): 115-119. Shi D H. Networks — A new approach for exploring complexity[J]. Journal of System Engineering, 2005, 20(2): 115-119. [10] 姜璐, 刘琼慧. 系统科学与复杂网络研究[J]. 系统辩证学学报, 2005, 13(4): 14-17. Jiang L, Liu Q H. Research on systems science and complex networks[J]. Journal of Systemic and Dialectics, 2005, 13(4): 14-17.[11] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京: 清华大学出版社, 2006. [12] 方锦清, 汪小帆, 郑志刚, 等. 一门崭新的交叉科学:网络科学(上)[J]. 物理学进展, 2007, 27(3): 239-343. Fang J Q, Wang X F, Zheng Z G, et al. New interdisciplinary science: Networks science (I) [J]. Progress in Physics, 2007, 27(3): 239-343.[13] 方锦清, 汪小帆, 郑志刚, 等. 一门崭新的交叉科学:网络科学(下) [J]. 物理学进展, 2007, 27(4): 361-448. Fang J Q, Wang X F, Zheng Z G, et al. New interdisciplinary science: Networks science (II) [J]. Progress in Physics, 2007, 27(4): 361-448.[14] Albert R, Barabá si A L. Statistical mechanics of complex networks[J]. Rev Mod Phys, 2002, 74(1): 47-51.[15] Strogatz S H. Exploring complex networks[J]. Nature, 2001, 410: 268-276. [16] Curtis B, Kellner M, Over J. Process modeling[J]. Commun ACM, 1992, 35(9): 75-90. [17] Jones R M. An introduction to cognitive architectures for modeling and simulation[C]//Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), 2004.[18] Laird J E, Newell A, Rosenbloom P S. Soar: An architecture for general intelligence[J]. Artificial Intelligence, 1987, 33(1): 1-64.[19] Niels T, Christian L, John A. Modeling Paradigms in ACT-R[M]. Cognitive Modeling to Social Simulation, Cambridge University Press, 2006.[20] Zachary W W, Ryder J M, Hicinbothom J H. Cognitive task analysis and modeling of decision making in complex environments. decision making under stress[C]//Implications for Training and Simulation, Washington, DC: American Psychological Association, 1999.[21] Klein G. A recognition-primed decision (RPD) model of rapid decision making[C]//Klein G, Orasanu J, Calderwood R. Decision Making in Action: Models and Methods, Ablex Publishing Corporation, Norwood, NJ, 1993.[22] Feigenbaum E A, Feldman J. Computers and Thought[M]. New York: McGraw-Hill, 1963.[23] Valiant L G. A theory of the learnable[J]. ACM Machine Learning, 1984, 27(11): 1134-1142.[24] Stuart R, Peter N. Aritificial Intelligence — A Modern Approach[M]. 2nd ed. Prentice Hall Press, 2003. [25] Mason C R, Moffat J. Representing the C2 process in simulations: Modelling the human decision-maker[C]// Proceedings of the 2000 Winter Simulation Conference, 2000.[26] Rumbaugh J, Jacobson I, Booch G. The Unified Modeling Language Reference Manual[M]. Addison-Wesley, 1999. [27] Weske M. Business Process Management: Concepts, Languages, Architectures[M]. Springer, 2007. [28] Gronau N, Mü ller C, Korf R. KMDL — Capturing, analysing and improving knowledge-intensive business processes[J]. Journal of Computer Science, 2005, 4.[29] Schonenberg H, Mans R, Russell N, et al. Process flexibility: A survey of contemporary approaches[C]// Lecture Notes in Business Information Processing, Springer-Verlag, Berlin, 2008. [30] Dadam P, Reichert M. The ADEPT project: A decade of research and development for robust and flexible process support challenges and achievements[J]. Computer Science Research and Development, 2009, 23(2): 81-97.[31] Burmeister A, Copaciu F, Rimassa G. BDI-agents for agile goal-oriented business processes[C]//Proc of 7th Int Conf on Autonomous Agents and Multiagent Systems, 2008.[32] IEEE Computer Society. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)[S]. IEEE Std 1516.1-2000, IEEE Press, 2000. [33] Kleppe A, Warmer J, Bast W. MDA Explained: The Model Driven ArchitectureTM: Practice and Promise[M]. Addison Wesley, 2003.[34] European Space Agency. SMP 2.0 Handbook Issue 1 Revision 2[Z]. EGOS-SIM-GEN-TN-0099, 2005.[35] Corkill D D, Lesser V R. The use of meta-level control for coordination in a distributed problem solving network[C]//Proceedings of the Eighth International Joint Conference on Artificial Intelligence, 1999.[36] Borchert A, Jones J H. Organizational fitness of a proposed network centric organization[C]//Proceedings of the Command and Control Research and Technology Symbosium, Newport, 1999.[37] Fulk J, DeSanctis G. Electronic communications and changing organizational forms[J]. Organization Science, 1995, 6: 337-349.[38] Brown S, Eisenhardt K. The art of continuous change: Linking complexity theory and time-paced evolution in relentlessly shifting organizations[J]. Administrative Science Quarterly, 1997, 42: 1-34.[39] Shehory O, Sycara K, Chalasani P, et al. Agent cloning: An approach to agent mobility and resource allocation[J]. IEEE Communications, 1998, 36(7): 58-67.[40] So Y, Durfee E H. Modeling and designing computational organizations[C]//Working Notes of the AAAI Spring Symposium on Computational Organization Design, 1994.[41] Ishida T, Yokoo M, Gasser L. An organizational approach to adaptive production systems[C]//National Conference on Artificial Intelligence, 1990.[42] Corkill D D, Lesser V R. The use of meta-level control for coordination in a distributed problem solving network[C]//Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, 1983.[43] Turner R, Turner E. Organization and reorganization of autonomous oceanographic sampling networks[C]// Proceedings of the IEEE Interlational Conference on Robotics and Automation, 1998.[44] Horling B, Benyo B, Lesser V. Using self-diagnosis to adapt organizational structures[C]//Proceedings of the Fifth International Conference on Autonomous Agents, 2001.[45] Wong S, Burton R M. Virtual teams: What are their characteristics, and impact on team performance[J]. Computational and Mathmatical Organization Theory, 2001, 6(4): 339-360.[46] Kim J, Burton R M. The effect of structure and uncertainty on the efficiency of a team-based project[J]. Computational and Mathematical Organization Theory, 2000, 7(3): 20-28.[47] Reibman A, Nolte L W. Design and performance comparison of distributed detection networks[J]. IEEE Trans Aerosp and Electr Syst, 1987, 23: 789-796.[48] Papastavrou J D, Athans M. On optimal distributed detection architectures in a hypothesis testing environment[J]. IEEE Transactions on Automatic Control, 1992, 37: 1154-1169.[49] Pete A, Pattipati K R, Kleinman D L. Distributed detection in teams with partial information: A normative-descriptive model[J]. IEEE Trans Syst, Man, Cybern, 1993, 23: 1626-1648.[50] Tang Z B, Pattipati K R, Kleinman D L. Optimization of distributed detection networks: Part II. Generalized tree structures[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23: 211-221.[51] Carley K M, Lin Z. Organizational design suited to high performance under stress[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25: 221-231.[52] Levchuk G M, Kleinman D L, Ruan S, et al. Congruence of human organizations and missions: Theory versus data[C]//International Command and Control Research and Technology Symposium, Washington, DC, June, 2003.[53] Diedrich F J, Entin E E, Hutchins S G, et al. When do organizations need to change (Part I)? Coping with incongruence [C]//Proceedings of the Command and Control Research and Technology Symposium, Washington, 2003.[54] Entin E E, Diedrich F J, Kleinman D L, et al. When do organizations need to change (Part II)? Incongruence in action [C]//Proceedings of the Command and Control Research and Technology Symposium, Washington, 2003.