Abstract:With the fast development of micro-blogs, there is an unprecedented abundance of information shared online. Meanwhile, information overload appears. Due to the continually increasing nonstructural contents and the complexity that characterizes the structure of social networks, the deployment of online customized recommendation systems is very challenging. In this article a collaborative filtering recommendation model integrating information diffusion has been designed to solve the problem of data sparsity and cold-start problem in the context of micro-blog websites. Firstly, the proposed framework constructs a user-keyword interest model by using natural language processing technology to handle nonstructural contents.extracted thereafter act as recommended items. Secondly, the research uses a first-order Markov random work model to simulate the processing of users' preference' diffusion in social networks. The user-keyword preference matrix is then conducted. Lastly, the experiments are conducted with real world dataset from Weibo. The effectiveness of the proposed recommendation model is evaluated by using three assessment criteria (mean absolute error, precision and recall). The results show that the collaborative filtering recommendation model integrating information diffusion performs better than benchmark models which do not consider social networks.
蔡淑琴, 袁乾, 周鹏, 梁烽. 基于信息传播理论的微博协同过滤推荐模型[J]. 系统工程理论与实践, 2015, 35(5): 1267-1275.
CAI Shu-qin, YUAN Qian, ZHOU Peng, LIANG Feng. Collaborative filtering recommendation model in micro-blogging website based on information diffusion theory. Systems Engineering - Theory & Practice, 2015, 35(5): 1267-1275.
[1] Ong J. China's Sina Weibo grew 73\% in 2012, passing 500 million registered accounts[EB/OL]. [2013-02-21]. http://thenextweb.com/asia/2013/02/21/chinas-sina-weibo-grew-73-in-2012-passing-500-million-registered-acc ounts/. [2] Java A. Mining social media communities and content[D]. Maryland: University of Maryland, Baltimore County, 2008. [3] Dao T H, Jeong S R, Ahn H. A novel recommendation model of location-based advertising: Context-aware collaborative filtering using GA approach[J]. Expert Systems with Applications, 2012, 39(3): 3731-3739. [4] Aldrich S E. Recommender systems in commercial use[J]. AI Magazine, 2011, 32(3): 28-34. [5] 赵文兵,赵宇翔,朱庆华,等. Web 2.0 环境下社交网络信息传播仿真研究[J]. 情报学报, 2013, 32(5): 511-521.Zhao Wenbing, Zhao Yuxiang, Zhu Qinghua, et al. A simulation study on information diffusion in social networks under Web2.0 environment[J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(5): 511-521. [6] Hosanagar K, Han P, Tan Y. Diffusion models for peer-to-peer (P2P) media distribution: On the impact of decentralized, constrained supply[J]. Information Systems Research, 2010, 21(2): 271-287. [7] Lawrence R D, Almasi G S, Kotlyar V, et al. Personalization of supermarket product recommendations[J]. Data Mining and Knowledge Discovery, 2001, 5(1): 11-32. [8] 朱国玮,周利.基于遗忘函数和领域最近邻的混合推荐研究[J]. 管理科学学报, 2012, 15(5): 55-64.Zhu Guowei, Zhou Li. Hybrid recommendation based on forgetting curve and domain nearest neighbor[J]. Journal of Management Sciences in China, 2012, 15(5): 55-64. [9] 金淳,张一平. 基于Agent的顾客行为及个性化推荐仿真模型[J]. 系统工程理论与实践, 2013, 33(2): 463-472. Jin Chun, Zhang Yiping. Agent-based simulation model of customer behavior and personalized recommendation[J]. Systems Engineering - Theory & Practice, 2013, 33(2): 463-472. [10] 蔡淑琴,胡慕海,叶波,等. 情境化推荐中基于超图模式的用户偏好漂移识别研究[J]. 情报学报, 2011, 30(8): 802-811. Cai Shuqin, Hu Muhai, Ye Bo, et al. Contextul recommendation-oriented user preference drift recognition based on hypergraph model[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(8): 802-811. [11] 王丽莎,张绍武,林鸿飞. 基于项目和标签的随机游走个性化信息推荐模型[J]. 情报学报, 2012, 31(3): 289-296. Wang Lisha, Zhang Shaowu, Lin Hongfei. An information recommendation model based on item and tag random walk model[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(3): 289-296. [12] Ariyoshi Y, Kamahara J. A hybrid recommendation method with double SVD reduction[C]//Database Systems for Advanced Applications. Springer Berlin Heidelberg, 2010: 365-373. [13] Choi S M, Ko S K, Han Y S. A movie recommendation algorithm based on genre correlations[J]. Expert Systems with Applications, 2012, 39(9): 8079-8085. [14] Zeng X, Wei L. Social ties and user content generation: Evidence from flickr[J]. Information Systems Research, 2013, 24(1): 52-70. [15] Barabási A, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. [16] Daley D J, Kendall D G. Epidemics and rumours[J]. Nature, 1964, 204(4963): 1118. [17] Bass F M. A new product growth for model consumer durables[J]. Management Science, 1969, 15(5): 215-227. [18] Watts D J, Dodds P S. Influentials, networks, and public opinion formation[J]. Journal of Consumer Research, 2007, 34(4): 441-458. [19] Mcpherson M, Smith-Lovin L, Cook J M. Birds of a feather: Homophily in social networks[J]. Annual Review of Sociology, 2001, 27(3): 415-444. [20] Granovetter M S. The strength of weak ties[J]. American Journal of Sociology, 1973, 78(6): 1360-1380. [21] 冯芷艳,郭迅华,曾大军,等. 大数据背景下商务管理研究若干前沿课题[J]. 管理科学学报, 2013, 16(1): 1-9. Feng Zhiyan, Guo Xunhua, Zeng Dajun, et al. On the research frontiers of business management in the context of big data[J]. Journal of Management Sciences in China, 2013, 16(1): 1-9. [22] Xu Y H, Guo X T, Hao J X, et al. Combining social network and semantic concept analysis for personalized academic researcher recommendation[J]. Decision Support Systems, 2012, 54(1): 564-573. [23] 赵良杰,武邦涛,段文奇,等. 消费者交互作用对网络效应产品扩散的影响 —— 基于产品生命周期的视角[J]. 系统工程理论与实践, 2012, 32(1): 67-75. Zhan Liangjie, Wu Bangtao, Duan Wenqi, et al. The influence of customer interactions on the diffusion of products with network effects: A view based on product life cycle[J]. Systems Engineering - Theory & Practice, 2012, 32(1): 67-75. [24] Ryan R M, Deci E L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being[J]. American Psychologist, 2000, 55(1): 68-78. [25] Salton G, Buckley C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management, 1988, 24(5): 513-523. [26] Yildirim H, Krishnamoorthy M S. A random walk method for alleviating the sparsity problem in collaborative filtering[C]// Proceedings of the 2008 ACM Conference on Recommender Systems, ACM, 2008: 131-138. [27] Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]// Proceedings of the Second SIGHAN Workshop on Chinese Language Processing-Volume 17. Association for Computational Linguistics, 2003: 184-187. [28] Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]// Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1998: 43-52. [29] Tang L, Liu H. Community Detection and Mining Social Media[M]. 3 ed. Morgan & Claypool Publishers, 2010. [30] Goldberg K, Roeder T, Gupta D, et al. Eigentaste: A constant time collaborative filtering algorithm[J]. Information Retrieval, 2001, 4(2): 133-151. [31] Shang M S, Zhang Z K, Zhou T, et al. Collaborative filtering with diffusion-based similarity on tripartite graphs[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(6): 1259-1264. [32] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022.