Abstract:As an alliance form for players, a level structure is more general than a coalition structure. This paper devotes to propose the multi-step Shapley value of transferable utility cooperative games with a level structure. Concretely, an allocation procedure and an axiomatic characterization of it are given. Additionally, as an equivalent allocation procedure, this paper proves that it is identical with the weighted Shapley value of an appropriate transferable utility cooperative game. Research results extend the two-step Shapley value of transferable utility cooperative games with a coalition structure, and they can be taken as references to investigate other solutions of transferable utility cooperative games with an alliance restriction.
胡勋锋, 李登峰. 带层次结构效用可转移合作对策的多步Shapley值[J]. 系统工程理论与实践, 2016, 36(7): 1863-1870.
HU Xunfeng, LI Dengfeng. The multi-step Shapley value of transferable utility cooperative games with a level structure. Systems Engineering - Theory & Practice, 2016, 36(7): 1863-1870.
[1] 李维乾, 解建仓, 李建勋, 等. 基于改进Shapley值解的流域生态补偿额分摊方法[J]. 系统工程理论与实践, 2013, 33(1):255-261.Li W Q, Xie J C, Li J X, et al. Method of allocating ecological compensation amount of river basin based on improved Shapley value[J]. Systems Engineering——Theory & Practice, 2013, 33(1):255-261. [2] 冯海荣, 李军, 曾银莲. 延期支付下的易腐品联合采购费用分配[J]. 系统工程理论与实践, 2013, 33(6):1411-1423.Feng H R, Li J, Zeng Y L. Cost allocation for collaborative procurement on perishable products under permissible delay in payments[J]. Systems Engineering——Theory & Practice, 2013, 33(6):1411-1423. [3] 张启平, 刘业政, 李勇军. 考虑受益性的固定成本分摊DEA纳什讨价还价模型[J]. 系统工程理论与实践, 2014, 34(3):756-768.Zhang Q P, Liu Y Z, Li Y J. The DEA Nash bargaining model for allocating the fixed cost considering benefit[J]. Systems Engineering——Theory & Practice, 2014, 34(3):756-768. [4] 薛俭, 谢婉林, 李常敏. 京津冀大气污染治理省际合作博弈模型[J]. 系统工程理论与实践, 2014, 34(3):810-816.Xue J, Xie W L, Li C M. Inter-provincial cooperative game model of Beijing, Tianjin and Hebei province air pollution control[J]. Systems Engineering——Theory & Practice, 2014, 34(3):810-816. [5] Aumann R J, Dreze J H. Cooperative games with coalition structures[J]. International Journal of Game Theory, 1974, 3(4):217-237. [6] Owen G. Values of games with a priori unions[M]//Mathematical Economics and Game Theory, Berlin:Springer-Verlag, 1977:76-88. [7] Kamijo Y. A two-step Shapley value for cooperative games with coalition structures[J]. International Game Theory Review, 2009, 11(2):207-214. [8] Winter E. A value for cooperative games with levels structure of cooperation[J]. International Journal of Game Theory, 1989, 18(2):227-240. [9] Calvo E, Lasaga J J, Winter E. The priciple of balanced contributions and hierarchies of cooperation[J]. Mathematical Social Science, 1996, 31(3):171-182. [10] Khmelnitskaya A B, Yanovskaya E B. Owen coalitional value without additivity axiom[J]. Mathematical Methods of Operations Research, 2007, 66(2):255-261. [11] Casajus A. Another characterization of the Owen value without the additivity axiom[J]. Theory and Decision, 2010, 69(4):523-536. [12] Vidal-Puga J J. Implementation of the levels structure value[J]. Annals of Operations Research, 2005, 137(1):191-209. [13] 胡勋锋, 李登峰. Shapley值与Winter值的解析关系[J]. 运筹学学报, 2015, 19(4):114-120.Hu X F, Li D F. Analytic relationship between Shapley and Winter values[J]. Operations Research Transactions, 2015, 19(4):114-120. [14] Shapley L S. A value for n-person games[C]//Kuhn H W, Tucker A W. Contributions to the Theory of Games Ⅱ, Princeton:Princeton University Press, 1953:307-317. [15] Gómez-Rúa M, Vidal-Puga J J. Balanced per capita contributions and level structure[J]. TOP, 2011, 19(1):167-176. [16] Álvarez-Mozos M, Tejada O. Parallel characterizations of a generalized Shapley value and a generalized Banzhaf value for cooperative games with level structure of cooperation[J]. Decision Support Systems, 2011, 52(1):21-27. [17] Álvarez-Mozos M, Tejada O. Share functions for cooperative games with levels structure of cooperation[J]. European Journal of Operational Research, 2013, 224(1):167-179. [18] Kalai E, Samet D. On weighted Shapley values[J]. International Journal of Game Theory, 1987, 16(3):205-222. [19] Myerson R B. Graphs and cooperation in games[J]. Mathematics of Operations Research, 1977, 2(3):225-229.