Abstract:This article studied the kind of charitable fund allocation problem which is consist of N applicants and an allocator, aiming at maximizing the social welfare and finally designed a corresponding allocation and inspection mechanism when the applicants are all identical. The mechanism stops the lying behavior of applicants effectively based on the dominant incentive compatible constraints. The results show that truth reporting is a Nash equilibrium for each applicant considering that the other applicants report truthfully. The allocation of each applicant relies on the worst type applicant in each report under the optimized allocation situation. Through an example analysis of two applicants, the manipulation of this new mechanism is identified. The research provides a reference for such kind of funding allocation and inspection problem.
[1] 民政部. 2014年社会服务发展统计公报[EB/OL]. [2015-06-10]. http://www.mca.gov.cn/article/zwgk/mzyw/201506/20150600832371.shtml.MOCA. Development of social service statistical bulletin in 2014[EB/OL]. [2015-06-10]. http://www.mca.gov.cn/article/zwgk/mzyw/201506/20150600832371.shtml. [2] 陈丽红, 张龙平, 李青原,等. 会计信息会影响捐赠者的决策吗?——来自中国慈善基金会的经验证据[J]. 会计研究, 2015(2): 28-36. Chen L H, Zhang L P, Li Q Y, et al. Does accounting information affect decisions of charitable donors?-Evidence from Chinese charitable funds[J]. Accounting Research, 2015(2): 28-36. [3] 崔义中, 俞泉. 格罗夫斯-克拉克机制下我国慈善资金的使用——基于效率与公平均衡的视角[J]. 西安交通大学学报(社会科学版), 2011, 31(6): 53-57.Cui Y Z, Yu Q. The use of China's charitable fund upon Groves-Clarke mechanism-Based on a balanced perspective of efficiency and fairness[J]. Journal of Xi'an Jiaotong University (Social Sciences), 2011, 31(6): 53-57. [4] 邹小燕, 张新华. 基于社会福利最大化的电力市场双边竞价机制设计[J]. 系统工程理论与实践, 2009, 29(1): 44-54.Zhou X Y, Zhang X H. Double electricity auction mechanism design based on maximizing market welfare[J]. Systems Engineering-Theory & Practice, 2009, 29(1): 44-54. [5] 郑君君, 张平, 饶从军,等. 基于Swarm的股权拍卖机制设计与仿真研究[J]. 系统工程理论与实践, 2014, 34(4): 883-891.Zheng J J, Zhang P, Rao C J, et al. Research on mechanism design and simulation of equity auction based on Swarm[J]. Systems Engineering-Theory & Practice, 2014, 34(4): 883-891. [6] Myerson R B. Optimal auction design[J]. Mathematics of Operations Research, 1981, 6(1): 58-74. [7] Federgruen A, Groenevelt H. The greedy procedure for resource allocation problems: Necessary and sufficient conditions for optimality[J]. Operations Research, 1986, 34(6): 909-918. [8] Cachon G P. The allocation of inventory risk in a supply chain: Push, pull, and advance-purchase discount contracts[J]. Management Science, 2004, 50(2): 222-238. [9] Bergemann D, Valimaki J. The dynamic pivot mechanism[J]. Econometrica, 2010, 78(2): 771-789. [10] Athey S, Segal I. An efficient dynamic mechanism[J]. Econometrica, 2013, 81(6): 2463-2485. [11] Kakade S M, Lobel I, Nazerzadeh H. Optimal dynamic mechanism design and the virtual-pivot mechanism[J]. Operations Research, 2013, 61(4): 837-854.