Abstract:The polygonal fuzzy number can determine a class of fuzzy information with the help of the orderly representation of real numbers. It can not only approximate a general fuzzy number according to arbitrary precision, but also it overcomes the complexity the arithmetic operations of fuzzy numbers based on Zadeh's extended principle. In this article, we first introduce the definition of the polygonal fuzzy number and its orderly representation, and its extended arithmetic operations and the metric formula are given. Secondly, the multiple attribute index information of clustering objects are described through the orderly representation of polygonal fuzzy numbers, and then, the optimal fuzzy partition (matrix) and clustering centers are obtained by the objective function, and a fuzzy c-means (FCM) clustering algorithm is put forward based on the pattern of polygonal fuzzy numbers to describe multiple attribute index information. Finally, try to prove that algorithm is prior to trapezoidal fuzzy number to describe index information through a numerical example.
段云, 王贵君. 基于折线模糊数多属性指标信息的FCM聚类算法[J]. 系统工程理论与实践, 2016, 36(12): 3220-3228.
DUAN Yun, WANG Guijun. A FCM clustering algorithm based on polygonal fuzzy numbersto describe multiple attribute index information. Systems Engineering - Theory & Practice, 2016, 36(12): 3220-3228.
[1] 刘普寅. 一种新的模糊神经网络及其逼近性能[J]. 中国科学(E辑), 2002, 32(1):76-86.Liu P Y. A new fuzzy neural network and its approximation capability[J]. Science in China (E), 2002, 32(1):76-86. [2] 王贵君, 李晓萍. K-积分模意义下折线模糊神经网络的泛逼近性[J]. 中国科学:信息科学, 2012, 42(3):362-378.Wang G J, Li X P. Universal approximation of polygonal fuzzy neural networks in sense of K-integral norms[J]. Science China:Information Sciences, 2012, 42(3):362-378. [3] Wang G J, Li X P. Construction of the polygonal fuzzy neural network and its approximation based on K-integral norm[J]. Neural Network World, 2014, 24(4):357-376. [4] 何英, 王贵君. 折线模糊神经网络的共轭梯度算法[J]. 电子学报, 2012, 40(10):2079-2084.He Y, Wang G J. Conjugate gradient algorithm of the polygonal fuzzy neural networks[J]. Acta Electronica Sinica, 2012, 40(10):2079-2084. [5] Yang Y Q, Wang G J, Yang Y. Parameters optimization of polygonal fuzzy neural networks based on GA-BP hybrid algorithm[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(5):815-822. [6] 王贵君, 何英, 李晓萍. 基于MISO折线模糊神经网络的优化算法[J]. 中国科学:信息科学, 2015, 45(5):650-667.Wang G J, He Y, Li X P. Uniformity analysis and its Hebb algorithm-particle algorithm of MISO polygonal fuzzy neural network[J]. Science China:Information Sciences, 2015, 45(5):650-667. [7] Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1974, 3(2):32-57. [8] Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981. [9] 肖满生, 肖哲, 文志强, 等. 模糊C-均值聚类区间型模糊化参数模型[J]. 系统工程与电子技术, 2015, 37(4):868-873.Xiao M S, Xiao Z, Wen Z Q, et al. Interval type fuzzifier parameter model in fuzzy c-means clustering[J]. Systems Engineering and Electronics, 2015, 37(4):868-873. [10] 张颖, 邵慧鹤. 自适应模糊辨识中关于模糊最近邻聚类学习算法的一种改进[J]. 控制与决策, 1999, 14(4):329-333.Zhang Y, Shao H H. An improving method on fuzzy nearest-neighbour clustering learning in self-adaptive fuzzy identification[J]. Control and Decision, 1999, 14(4):329-333. [11] Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996, 84(1):49-60. [12] 樊治平, 于春海, 尤天慧. 一种基于区间数多指标信息的FCM聚类算法[J]. 系统工程学报, 2004, 19(4):388-389.Fan Z P, Yu C H, You T H. A FCM clustering algorithm for multiple attribute information with interval numbers[J]. Journal of Systems Engineering, 2004, 19(4):388-389. [13] 于春海, 樊治平. 一种基于三角模糊数多指标信息的FCM聚类算法[J]. 控制与决策, 2004, 19(12):1408-1409.Yu C H, Fan Z P. An FCM clustering algorithm for multiple attribute information with triangular fuzzy numbers[J]. Control and Decision, 2004, 19(12):1408-1409. [14] 高建伟, 刘慧晖, 谷云东. 基于前景理论的区间直觉模糊多准则决策方法[J]. 系统工程理论与实践, 2014, 34(12):3176-3181.Gao J W, Liu H H, Gu Y D. Interval-valued intuitionistic fuzzy multi-criteria decision-making method based on prospect theory[J]. Systems Engineering-Theory & Practice, 2014, 34(12):3176-3181. [15] 刘满凤, 任海平. 基于一类新的直觉模糊熵多属性决策方法研究[J]. 系统工程理论与实践, 2015, 35(11):2909-2916.Li M F, Ren H P. A study of multi-attribute decision making based on a new intuitionistic fuzzy entropy measure[J]. Systems Engineering-Theory & Practice, 2015, 35(11):2909-2916.