Modelling term structure of interest rates based on rational interpolation function
JING Ke1,2, LIU Yezheng1, KANG Ning1
1. School of Management, Hefei University of Technology, Hefei 230009, China; 2. School of Mathematics and Statistics, Fuyang Normal University, Fuyang 236037, China
Abstract:Based on the barycentric rational interpolation, we propose a new model to fit the term structure of interest rates, which include construction of basis function, parameter estimation, knot selection and model forecasting. Compared with the traditional models, the new model has at least four advantages. Firstly, it has higher smoothness in fitting interest curve. Secondly, it has lower computational complexity in estimating parameters. Thirdly, it has richer economic significance of estimation parameters. And lastly, it has higher prediction accuracy. Our empirical results are based on the term structure of treasury bills in Shanghai Stock Exchange, and the results show that the new model not only has better performance in structure analysis, computational complexity, prediction capability and economic significance, but also improve the fitting and pricing accuracy of bonds.
荆科, 刘业政, 康宁. 基于有理插值函数的利率期限结构模型[J]. 系统工程理论与实践, 2017, 37(1): 132-139.
JING Ke, LIU Yezheng, KANG Ning. Modelling term structure of interest rates based on rational interpolation function. Systems Engineering - Theory & Practice, 2017, 37(1): 132-139.
[1] McCulloch J H. Measuring the term structure of interest rate[J]. Journal of Business, 1971, 44(1): 19-31. [2] Vasicek O A, Fong H G. Term structure modeling using exponential splines[J]. Journal of Finance, 1982, 37(2): 339-348. [3] Steeley J M. Estimating the gilt-edged term structure: Basis splines and confidence intervals[J]. Journal of Business Finance & Accounting, 1991, 18(4): 513-529. [4] Chiu N C, Fang S C, Lavery J E, et al. Approximating term structure of interest rates using cubic L1 splines[J]. European Journal of Operational Research, 2008, 184(3): 990-1004. [5] 胡海鹏, 方兆本. 中国利率期限结构平滑样条拟合改进研究[J]. 管理科学学报, 2009, 12(1): 101-111. Hu H P, Fang Z B. Research on improving smoothing spline method to fit China's term structure of interest rates[J]. Journal of Management Sciences in China, 2009, 12(1): 101-111. [6] 谢赤, 陈晖. 利率期限结构的理论与模型[J]. 经济评论, 2004, 1: 68-70. Xie C, Chen H. The theory and model of the term structure of interest rates[J]. Economic Review, 2004, 1: 68-70. [7] 王晓芳, 刘凤根, 韩龙. 基于三次样条函数的中国国债利率期限结构曲线构造[J]. 系统工程, 2005, 23(6): 85-89. Wang X F, Liu F G, Han L. Formatting the term structure curve of interest rates of China's treasury bonds based on cubic spline functions[J]. Systems Engineering, 2005, 23(6): 85-89. [8] 林海, 郑振龙. 利率期限结构研究述评[J]. 管理科学学报, 2007, 10(1): 79-98. Lin H, Zheng Z L. Term structure of interest rate: Selected literature review[J]. Journal of Management Sciences in China, 2007, 10(1): 79-98. [9] 萧楠, 程希骏. 抗差样条模型对我国国债利率期限结构的建模与实证[J]. 系统工程, 2007, 25(6): 35-40. Xiao N, Cheng X J. Fitting term structure of interest rate of domestic bonds market by robust spline[J]. Systems Engineering, 2007, 25(6): 35-40. [10] 李熠熠, 潘婉彬, 缪柏其. 基于最小一乘准则的三次样条对利率期限结构的拟合[J]. 数理统计与管理, 2010, 29(1): 170-174. Li Y Y, Pan W B, Miao B Q. Fitting term structure of interest rates with cubic spline function based on least absolute deviations regression[J]. Journal of Applied Statistic and Management, 2010, 29(1): 170-174. [11] Fan J Q, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456): 1348-1360. [12] 李熠熠, 潘婉彬, 缪柏其. 基于LAD-Lasso 方法的利率期限结构拟合中的节点选择[J]. 中国科学技术大学学报, 2010, 40(6): 551-556. Li Y Y, Pan W B, Miao B Q. Knot selection of estimating the term structure based on LAD-Lasso criterion[J]. Journal of University of Science and Technology of China, 2010, 40(6): 551-556. [13] 程希骏, 萧楠. 基于稳健的样条函数法对国债利率期限结构的拟合[J]. 中国科学技术大学学报, 2006, 36(12): 1275-1280. Cheng X J, Xiao N. Fitting term structure of interest rates of treasure bill market with splines based on robust estimation[J]. Journal of University of Science and Technology of China, 2006, 36(12): 1275-1280. [14] 杨丰梅, 任姝仪, 周荣喜. 带有惩罚项的多项式样条函数利率期限结构模型实证比较[J]. 系统工程理论与实践, 2011, 31(4): 735-739.Yang F M, Ren S Y, Zhou R X. Empirical comparison term of interest rates model based on polynomial spline function with penalty term[J]. Systems Engineering-Theory & Practice, 2011, 31(4): 735-739. [15] 刘峰, 程希骏. 基于M-SCAD 方法的利率期限结构中的节点选择[J]. 工程数学学报, 2014, 31(4): 579-587. Liu F, Cheng X J. Knot selection of estimating the term structure based on M-SCAD criterion[J]. Chinese Journal of Engineering Mathematics, 2014, 31(4): 579-587. [16] 周荣喜, 王晓光, 余湄. 基于组合预测的静态利率期限结构优化模型[J]. 运筹与管理, 2014, 23(6): 205-212. Zhou R X, Wang X G, Yu M. An optimization model of static term structure of interest rates based on the combinatorial forecast method[J]. Operations Research and Management Science, 2014, 23(6): 205-212. [17] Floater M S, Hormann K. Barycentric rational interpolation with no poles and high rates of approximation[J]. Numerische Mathematik, 2007, 107(2): 315-331. [18] Baker R D, Jackson D. Statistical application of barycentric rational interpolants: An alternative to splines[J]. Computational Statistics, 2014, 29(5): 1065-1081. [19] 陈希孺.最小一乘线性回归(上)[J].数理统计与管理, 1989, 8(5): 48-55.Chen X R. Least absolute deviation linear regression (Up)[J]. Journal of Applied Statistic and Management, 1989, 8(5): 48-55. [20] 陈希孺.最小一乘线性回归(下)[J].数理统计与管理, 1989, 8(6): 48-56.Chen X R. Least absolute deviation linear regression (Down)[J]. Journal of Applied Statistic and Management, 1989, 8(6): 48-56. [21] Koenker R, Bassett Jr G. Regression quantiles[J]. Econometrica: Journal of the Econometric Society, 1978, 41(1): 33-50.