Group evaluation method considering predefined groups of incentive characteristics
HOU Fang1,2, DIAO Peng1
1. School of Management, Shenyang University of Technology, Shenyang 110870, China; 2. Northeastern Evaluation Center, Northeastern University, Shenyang 110167, China
Abstract:The incentive evaluation refers to the purpose of achieving the reward and punishment in a certain way in the information aggregation process. The paper assumes that the evaluation goal will be influenced by predefined groups in the evaluation network. And the network is composed of experts as nodes and their interaction as links. A group evaluation method considering predefined groups is proposed for solving a certain scale. In the proposed method, firstly, the framework and path are constructed for satisfying the incentive goals, and predefined groups are considered through the Gefura measures. And then, the satisfactory solution of the incentive goals is obtained by evaluating the positive adjustment and the inverse modification process of the incentive goals. Finally, different incentive goals are analyzed. And the effect of incentive preferences coefficient of the group evaluation method is illustrated by examples.
[1] 郭亚军. 综合评价理论、方法及拓展[M]. 北京:科学出版社, 2012. Guo Y J. Comprehensive evaluation theory, methods and extensions[M]. Beijing:Science Press, 2012. [2] 李伟伟,易平涛,郭亚军. 有序分位加权集结算子及在激励评价中的应用[J]. 系统工程理论与实践, 2017, 37(2):452-459.Li W W, Yi P T, Guo Y J. Ordered fractile weighted aggregation operator and the application in incentive evaluation[J]. Systems Engineering-Theory & Practice, 2017, 37(2):452-459. [3] Li W W, Yi P T, Guo Y J, et al. Quantile induced heavy ordered weighted averaging operators and its application in incentive decision making[J]. International Journal of Intelligent Systems, 2018, 33(3):514-528. [4] Li W W, Yi P T, Guo Y J. Majority clusters-density ordered weighting averaging:A family of new aggregation operators in group decision making[J]. International Journal of Intelligent Systems, 2016, 31:1166-1180. [5] 易平涛,张丹宁,郭亚军. 基于泛激励控制线的多阶段信息集结方法[J]. 运筹与管理, 2010, 19(1):49-55.Yi P T, Zhang D N, Guo Y J. A multiphase information aggregation method based on extensive inspiriting control lines[J]. Operations Research and Management Science, 2010, 19(1):49-55. [6] 刘微微, 石春生, 赵圣斌. 具有速度特征的动态综合评价模型[J]. 系统工程理论与实践, 2013, 33(3):705-710.Liu W W, Shi C S, Zhao S B. Dynamic comprehensive evaluation model with the feature of speed[J]. Systems Engineering-Theory & Practice, 2013, 33(3):705-710. [7] 李伟伟, 郭亚军, 易平涛. 带有奖惩作用的密度算子及应用[J]. 运筹与管理, 2012, 21(4):146-152.Li W W, Guo Y J, Yi P T. Density operator with encouragement and chastisement function and the application[J]. Operations Research and Management Science, 2012, 21(4):146-152. [8] 马赞福, 郭亚军, 张发明,等.一种基于增益水平激励的动态综合评价方法[J]. 系统工程学报, 2009, 24(2):243-247. Ma Z F, Guo Y J, Zhang F M, et al. Method of dynamic comprehensive evaluation based on gain level inspiriting[J]. Journal of Systems Engineering, 2009, 24(2):243-247. [9] 张发明. 基于双重激励模型的动态综合评价方法及应用[J]. 系统工程学报, 2013, 28(2):248-255.Zhang F M. Dynamic comprehensive evaluation method based on double incentives model and its application[J]. Journal of Systems Engineering, 2013, 28(2):248-255. [10] 张发明,孙文龙. 改进的动态激励综合评价方法及应用[J]. 系统工程学报, 2015, 30(5):711-718.Zhang F M, Sun W L. Improved dynamic incentive comprehensive evaluation method and its application[J]. Journal of Systems Engineering, 2015, 30(5):711-718. [11] 张发明, 肖文星. 混合信息下的动态双激励评价机制设计及应用[J]. 中国管理科学, 2017, 25(12):138-146.Zhang F M, Xiao W X. Design of dynamic double incentive evaluation mechanism and its application under mixed information[J]. Chinese Journal of Management Science, 2017, 25(12):138-146. [12] 易平涛, 冯雪丽, 郭亚军,等.基于分层激励控制线的多阶段信息集结方法[J]. 运筹与管理, 2013, 22(6):140-146.Yi P T, Feng X L, Guo Y J, et al. A multi-phases information aggregation method based on stratified incentive control line[J]. Operations Research and Management Science, 2013, 22(6):140-146. [13] 李玲玉, 郭亚军, 易平涛,等. 基于改进分层激励控制线的多阶段信息集结方法[J]. 东北大学学报(自然科学版), 2018, 39(1):148-152.Li L Y, Guo Y J, Yi P T, et al. On multi-phase information aggregation methods based on improved stratified incentive control lines[J]. Journal of Northeastern University (Natural Science), 2018, 39(1):148-152. [14] 郭亚军, 周莹, 易平涛,等. 基于全局信息的动态激励评价方法及激励策略[J]. 系统工程学报, 2017, 32(2):282-288.Guo Y J, Zhou Y, Yi P T, et al. Dynamic incentive evaluation based on overall information and incentive strategy[J]. Journal of Systems Engineering, 2017, 32(2):282-288. [15] 宫诚举, 郭亚军, 郑红,等. 基于主客体需求的激励型综合评价方法[J]. 预测, 2017, 36(6):75-80.Gong C J, Guo Y J, Zheng H, et al. Incentive comprehensive evaluation method based on the demands of subject and object[J]. Forecasting, 2017, 36(6):75-80. [16] 侯芳. 面向知识员工的预置群体二元式绩效评价方法[J]. 系统管理学报, 2018, 27(6):1133-1141.Hou F. 2-Tuple evaluation on knowledge workers' performance considering predefined groups[J]. Journal of Systems & Management, 2018, 27(6):1133-1141. [17] Guns R, Rousseau R. Unnormalized and normalized forms of Gefura measures in directed and undirected networks[J]. Frontiers of Information Technology and Electronic Engineering, 2015, 16:311-320. [18] 廖建桥, 文鹏. 知识员工定义、特征及分类研究述评[J]. 管理学报, 2009, 6(2):277-283.Liao J Q, Wen P. Review of the study on definition, characters and classification of knowledge worker[J]. Chinese Journal of Management, 2009, 6(2):277-283. [19] Mládkováa L, Zouharováb J, Nový J. Motivation and knowledge workers[J]. Social and Behavioral Sciences, 2015, 207:768-776. [20] Perez I, Cabrerizo F, Alonso S, et al. A new consensus model for group decision making problems with non-homogeneous experts[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2014, 44:494-498.