Abstract:In comparison to the US market, we use several methods to study the volatility risk and the volatility risk premium in China's market. We find that there exist anomalies in China's market. First, unlike the US market, the volatility risk in China's market is not a systematic risk on the whole. It is time-varying, and shows significantly negative during crash period while significantly positive during non-crash period. Second, the option-implied volatility risk premium in China is negative although the volatility risk is not a systematic risk, which differs from the US market and does not match the principles of finance. That might mean the options should be continuously overpriced in China. It is proved by the simulation of the Buy-Write strategy.
[1] 丛明舒. 中国场内期权市场研究——基于中美关于期权隐含方差的差异[J]. 金融研究, 2018(12):189-206. Cong M S. Research on China's option market:Based on two empirical differences about option-implied variances between China and US[J]. Journal of Financial Research, 2018(12):189-206. [2] Cochrane J H. Asset pricing[M]. Princeton:Princeton University Press, 2001. [3] Coval J D, Shumway T. Expected option returns[J]. Journal of Finance, 2001, 56(3):983-1009. [4] Bakshi G, Kapadia N. Delta-hedged gains and the negative market volatility risk premium[J]. Review of Financial Studies, 2003, 16(2):527-566. [5] Carr P, Wu L. Variance risk premiums[J]. Review of Financial Studies, 2009, 22(3):1311-1341. [6] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. [7] Bollerslev T, Gibson M, Zhou H. Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities[J]. Journal of Econometrics, 2011, 160(1):235-245. [8] 陈蓉, 曾海为. 波动率风险溢酬:基于香港和美国期权市场的研究[J]. 商业经济与管理, 2012, 1(2):53-59. Chen R, Zeng H W. Volatility risk premium:A study on Hongkong and American option markets[J]. Journal of Business Economics, 2012, 1(2):53-59. [9] Bekaert G, Hoerova M. The VIX, the variance premium and stock market volatility[J]. Journal of Econometrics, 2014, 183(2):181-192. [10] 陈蓉, 方昆明. 波动率风险溢酬:时变特征及影响因素[J]. 系统工程理论与实践, 2011, 31(4):761-770. Chen R, Fang K M. Volatility risk premium in Hong Kong stock market[J]. Systems Engineering-Theory & Practice, 2011, 31(4):761-770. [11] Chernov M, Ghysels E. A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation[J]. Journal of Financial Economics, 2000, 56(3):407-458. [12] Pan J. The jump-risk premia implicit in options:Evidence from an integrated time-series study[J]. Journal of Financial Economics, 2002, 63(1):3-50. [13] Duan J C, Yeh C Y. Jump and volatility risk premiums implied by VIX[J]. Journal of Economic Dynamics and Control, 2010, 34(11):2232-2244. [14] 吴鑫育, 周海林. 波动率风险溢价——基于VIX的实证[J]. 系统工程理论与实践, 2014, 34(s1):1-11. Wu X Y, Zhou H L. Volatility risk premia:Evidence from VIX[J]. Systems Engineering-Theory & Practice, 2014, 34(s1):1-11. [15] Glosten L R, Jagannathan R, Runkle D E. On the relation between the expected value and the volatility of the nominal excess return on stocks[J]. Journal of Finance, 1993, 48(5):1779-1801. [16] Engle R F, Ng V K. Measuring and testing the impact of news on volatility[J]. Journal of Finance, 1993, 48(5):1749-1778. [17] Bollerslev T, Litvinova J, Tauchen G. Leverage and volatility feedback effects in high-frequency data[J]. Journal of Financial Economics, 2006, 4(3):353-384. [18] 郑振龙, 汤文玉. 波动率风险及风险价格——来自中国A股市场的证据[J]. 金融研究, 2011(4):143-157. Zheng Z L, Tang W Y. Volatility risk and risk price:Evidence form the Chinese A-share stock market[J]. Journal of Financial Research, 2011(4):143-157. [19] Black F. Studies of stock price volatility changes[C]//Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economic Statistics, 1976, 81:177-181. [20] Christie A C. The stochastic behavior of common stock variances:Value, leverage and interest rate effects[J]. Journal of Financial Economics, 1982, 10(4):407-432. [21] 冯志新, 王丹, 宋立新. 关于协方差的U统计量检验法[J]. 湖南师范大学自然科学学报, 2013, 36(5):1-6.Feng Z X, Wang D, Song L X. U-Statistic testing method about the difference of covariance[J]. Journal of Natural Science of Hunan Normal University, 2013, 36(5):1-6. [22] Jiang G, Tian Y. The model-free implied volatility and its information content[J]. Review of Financial Studies, 2005, 18(4):1305-1342. [23] Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business and Economic Statistics, 2006, 24(2):127-161. [24] 文凤华, 唐海如, 刘晓群, 等. 中国证券市场的HAR-BACD-V模型及其应用[J]. 系统工程理论与实践, 2012, 32(3):608-613. Wen F H, Tang H R, Liu X Q, et al. HAR-BACD-V model and its application to Chinese stock market[J]. Systems Engineering-Theory & Practice, 2012, 32(3):608-613. [25] 贺志芳, 杨鑫, 龚旭, 等. 股指期货市场波动率的预测研究[J]. 系统科学与数学, 2016, 36(8):1160-1174. He Z F, Yang X, Gong X, et al. Predicting stock index futures market volatility[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(8):1160-1174. [26] 龚旭, 文凤华, 黄创霞, 等. HAR-RV-EMD-J模型及其对金融资产波动率的预测研究[J]. 管理评论, 2017, 29(1):19-32. Gong X, Wen F H, Huang C X, et al. The HAR-RV-EMD-J model and its application to forecasting the volatility of financial assets[J]. Management Review, 2017, 29(1):19-32. [27] 刘晓倩, 王健, 吴广. 基于高频数据HAR-CVX模型的沪深300指数的预测研究[J]. 中国管理科学, 2017, 25(6):1-10. Liu X Q, Wang J, Wu G. The forecasting analysis of HS300 index based on HAR-CVX model of high frequency data[J]. Chinese Journal of Management Science, 2017, 25(6):1-10. [28] 陈声利, 李一军, 关涛. 基于四次幂差修正HAR模型的股指期货波动率预测[J]. 中国管理科学, 2018, 26(1):57-71. Chen S L, Li Y J, Guan T. Forecasting realized volatility of Chinese stock index futures based on approved HAR models with median realized quarticity[J]. Chinese Journal of Management Science, 2018, 26(1):57-71. [29] 陈声利, 关涛, 李一军. 基于跳跃、好坏波动率与百度指数的股指期货波动率预测[J]. 系统工程理论与实践, 2018, 38(2):299-316. Chen S L, Guan T, Li Y J. Forecasting realized volatility of Chinese stock index futures based on jumps, good-bad volatility and Baidu index[J]. Systems Engineering-Theory & Practice, 2018, 38(2):299-316. [30] Britten-Jones M, Neuberger A. Option prices, implied price processes, and stochastic volatility[J]. Journal of Finance, 2000, 55(2):839-866. [31] Bakshi G, Cao C, Chen Z. How often does the call move in the opposite direction to the underlying?[J]. Review of Financial Studies, 2000, 13:549-584. [32] 叶五一, 缪柏其. 已实现波动与日内价差条件下的CVaR估计[J]. 管理科学学报, 2012, 15(8):60-71. Ye W Y, Miao B Q. Estimating of CVaR with consideration of realized volatility and price range[J]. Journal of Management Sciences in China, 2012, 15(8):60-71. [33] 陈浪南, 杨科. 中国股市高频波动率的特征、预测模型以及预测精度比较[J]. 系统工程理论与实践, 2013, 33(2):296-307. Chen L N, Yang K. High-frequency volatility features, forecast model and performance evaluation[J]. Systems Engineering-Theory & Practice, 2013, 33(2):296-307. [34] 魏宇, 马锋, 黄登仕. 多分形波动率预测模型及其MCS检验[J]. 管理科学学报, 2015, 18(8):61-72. Wei Y, Ma F, Huang D S. Multi-fractal volatility forecasting model and its MCS test[J]. Journal of Management Sciences in China, 2015, 18(8):61-72.