WU Junjie1,3,4, LIU Guannan1, WANG Jingyuan2,3, ZUO Yuan1, BU Hui1, LIN Hao1
1. School of Economics and Management, Beihang University, Beijing 100191, China; 2. School of Computer Science, Beihang University, Beijing 100191, China; 3. Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China; 4. Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations, Beijing 100191, China
Abstract:With the unprecedented development of big data and artificial intelligence, data intelligence has emerged as a focal point in both academia and industry. It features in a set of predictive data analytics methods gathered in a big-data driven and applications oriented manner, including data mining, machine learning, deep learning, etc. It aims to extract valuable patterns from big data generated inside and outside targeted application scenarios so as to enhance real-life management and decision-making levels. This paper thus focuses on introducing the recent advances in data intelligence, which is formulated as a cyclic system including three naturally integrated and mutually functional dimensions: Data, algorithms, and scenarios. We discuss the hot topics, growing trends, as well as research challenges in data intelligence, with our own comments and opinions aiming to provide guidance for entering the area of data intelligence and arouse peer discussions on this exciting field.
吴俊杰, 刘冠男, 王静远, 左源, 部慧, 林浩. 数据智能:趋势与挑战[J]. 系统工程理论与实践, 2020, 40(8): 2116-2149.
WU Junjie, LIU Guannan, WANG Jingyuan, ZUO Yuan, BU Hui, LIN Hao. Data intelligence: Trends and challenges. Systems Engineering - Theory & Practice, 2020, 40(8): 2116-2149.
[1] Bizer C, Boncz P, Brodie M L, et al. The meaningful use of big data:Four perspectives-four challenges[J]. ACM Sigmod Record, 2012, 40(4):56-60. [2] Cattell R. Scalable sql and nosql data stores[J]. ACM Sigmod Record, 2011, 39(4):12-27. [3] Ngiam J, Khosla A, Kim M, et al. Multimodal deep learning[C]//Proceedings of the 28th International Conference on Machine Learning (ICML-11), 2011:689-696. [4] Provost F, Fawcett T. Data science and its relationship to big data and data-driven decision making[J]. Big Data, 2013, 1(1):51-59. [5] 陈国青, 吴刚, 顾远东, 等. 管理决策情境下大数据驱动的研究和应用挑战——范式转变与研究方向[J]. 管理科学学报, 2018, 21(7):1-10. Chen G Q, Wu G, Gu Y D, et al. The challenges for big data driven research and applications in the context of managerial decision-making:Paradigm shift and research directions[J]. Journal of Management Sciences in China, 2018, 21(7):1-10. Chen G Q, Wu G, Gu Y D, et al. The challenges for big data driven research and applications in the context of managerial decision-making:Paradigm shift and research directions[J]. Journal of Management Sciences in China, 2018, 21(7):1-10. [6] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [7] Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2):179-211. [8] Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1):61-80. [9] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//NIPS'17:Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017:6000-6010. [10] Devlin J, Chang M W, Lee K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018. [11] Williams M A. Transmutations of knowledge systems[C]//Principles of Knowledge Representation and Reasoning. Elsevier, 1994:619-629. [12] Van Der Aalst W. Data science in action[M]//Process Mining. Springer, 2016:3-23. [13] Negash S, Gray P. Business intelligence[M]//Handbook on Decision Support Systems 2. Springer, 2008:175-193. [14] Atanasov P, Rescober P, Stone E, et al. Distilling the wisdom of crowds:Prediction markets vs. prediction polls[J]. Management Science, 2016, 63(3):691-706. [15] Chittilappilly A I, Chen L, Amer-Yahia S. A survey of general-purpose crowdsourcing techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(9):2246-2266. [16] Von Ahn L, Dabbish L. Designing games with a purpose[J]. Commun ACM, 2008, 51(8):58-67. [17] Wang J, Kraska T, Franklin M J, et al. Crowder:Crowdsourcing entity resolution[J]. Proceedings of the VLDB Endowment, 2012, 5(11):1483-1494. [18] Tong Y, Chen L, Zhou Z, et al. Slade:A smart large-scale task decomposer in crowdsourcing[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(8):1588-1601. [19] Zhang X, Xue G, Yu R, et al. Truthful incentive mechanisms for crowdsourcing[C]//2015 IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015:2830-2838. [20] Alam S L, Campbell J. Temporal motivations of volunteers to participate in cultural crowdsourcing work[J]. Information Systems Research, 2017, 28(4):744-759. [21] Koh T K. Adopting seekers' solution exemplars in crowdsourcing ideation contests:Antecedents and consequences[J]. Information Systems Research, 2019, 30(2):486-506. [22] Zhang S, Singh P V, Ghose A. A structural analysis of the role of superstars in crowdsourcing contests[J]. Information Systems Research, 2019, 30(1):15-33. [23] Zheng Y, Li G, Li Y, et al. Truth inference in crowdsourcing:Is the problem solved?[J]. Proceedings of the VLDB Endowment, 2017, 10(5):541-552. [24] Daniel F, Kucherbaev P, Cappiello C, et al. Quality control in crowdsourcing:A survey of quality attributes, assessment techniques, and assurance actions[J]. ACM Computing Surveys (CSUR), 2018, 51(1):7. [25] Oh O, Agrawal M, Rao H R. Community intelligence and social media services:A rumor theoretic analysis of tweets during social crises[J]. MIS Quarterly, 2013, 37(2):407-426. [26] Yuan K, Liu G, Wu J. Whose posts to read:Finding social sensors for effective information acquisition[J]. Information Processing & Management, 2019, 56(4):1204-1219. [27] Xie W, Zhu F, Xiao J, et al. Social network monitoring for bursty cascade detection[J/OL]. ACM Trans Knowl Discov Data, 2018, 12(4). https://doi.org/10.1145/3178048. [28] An J, Weber I. Whom should we sense in "social sensing" analyzing which users work best for social media now-casting[J]. EPJ Data Science, 2015, 4(1):22. [29] 刘云浩. 群智感知计算[J]. 中国计算机学会通讯, 2012, 8(10):38-41. [30] Tong Y, Zhou Z, Zeng Y, et al. Spatial crowdsourcing:A survey[J]. The VLDB Journal, 2019, 29:217-250. [31] Yang D, Xue G, Fang X, et al. Incentive mechanisms for crowdsensing:Crowdsourcing with smartphones[J]. IEEE/ACM Transactions on Networking (TON), 2016, 24(3):1732-1744. [32] Yao S, Hu S, Zhao Y, et al. Deepsense:A unified deep learning framework for time-series mobile sensing data processing[C]//Proceedings of the 26th International Conference on World Wide Web, 2017:351-360. [33] Montori F, Jayaraman P P, Yavari A, et al. The curse of sensing:Survey of techniques and challenges to cope with sparse and dense data in mobile crowd sensing for internet of things[J]. Pervasive and Mobile Computing, 2018, 49:111-125. [34] Guo B, Chen C, Zhang D, et al. Mobile crowd sensing and computing:When participatory sensing meets participatory social media[J]. IEEE Communications Magazine, 2016, 54(2):131-137. [35] Radu V, Lane N D, Bhattacharya S, et al. Towards multimodal deep learning for activity recognition on mobile devices[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing:Adjunct. ACM, 2016:185-188. [36] Zhang Y, Chen Q, Zhong S. Privacy-preserving data aggregation in mobile phone sensing[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(5):980-992. [37] Xu G, Li H, Liu S, et al. Efficient and privacy-preserving truth discovery in mobile crowd sensing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4):3854-3865. [38] Samarati P, Sweeney L. Protecting privacy when disclosing information:k-anonymity and its enforcement through generalization and suppression[R]. SRI Computer Science Laboratory, 1998. [39] Machanavajjhala A, Kifer D, Gehrke J, et al. L-diversity:Privacy beyond k-anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1). https://doi.org/10.1145/1217299.1217302. [40] Wang M, Jiang Z, Zhang Y, et al. T-closeness slicing:A new privacy-preserving approach for transactional data publishing[J]. INFORMS Journal on Computing, 2018, 30(3):438-453. [41] Li X B, Qin J. Anonymizing and sharing medical text records[J]. Information Systems Research, 2017, 28(2):332-352. [42] Li X B, Sarkar S. Class-restricted clustering and microperturbation for data privacy[J]. Management Science, 2013, 59(4):796-812. [43] Lin C, Song Z, Song H, et al. Differential privacy preserving in big data analytics for connected health[J/OL]. Journal of Medical Systems, 2016, 40. doi:10.1007/s10916-016-0446-0. [44] Zhang Z, Qin Z, Zhu L, et al. Cost-friendly differential privacy for smart meters:Exploiting the dual roles of the noise[J/OL]. IEEE Transactions on Smart Grid, 2017, 8(2):619-626. doi:10.1109/TSG.2016.2585963. [45] Yang D, Qu B, Cudré-Mauroux P. Privacy-preserving social media data publishing for personalized rankingbased recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(3):507-520. [46] Gong N Z, Liu B. Attribute inference attacks in online social networks[J]. ACM Transactions on Privacy and Security (TOPS), 2018, 21(1):1-30. [47] Heimbach I, Hinz O. The impact of sharing mechanism design on content sharing in online social networks[J]. Information Systems Research, 2018, 29(3):592-611. [48] Xu H, Teo H H, Tan B C, et al. The role of push-pull technology in privacy calculus:The case of location-based services[J]. Journal of Management Information Systems, 2009, 26(3):135-174. [49] Buckman J R, Bockstedt J C, Hashim M J. Relative privacy valuations under varying disclosure characteristics[J]. Information Systems Research, 2019, 30(2):375-388. [50] Kummer M, Schulte P. When private information settles the bill:Money and privacy in google market for smartphone applications[J]. Management Science, 2019, 65(8):3470-3794. [51] Schneider M J, Jagpal S, Gupta S, et al. A flexible method for protecting marketing data:An application to point-of-sale data[J]. Marketing Science, 2018, 37(1):153-171. [52] Parker G G, Van Alstyne M W, Choudary S P. Platform revolution:How networked markets are transforming the economy? And how to make them work for you[M]. WW Norton & Company, 2016. [53] Parmar R, Mackenzie I, Cohn D, et al. The new patterns of innovation[J]. Harvard Business Review, 2014, 92(1):2. [54] Borgman C L. The conundrum of sharing research data[J]. Journal of the American Society for Information Science and Technology, 2012, 63(6):1059-1078. [55] Koutroumpis P, Leiponen A, Thomas L D. The (unfulfilled) potential of data marketplaces[R]. ETLA Working Papers, 2017. [56] Naor M, Pinkas B, Pinkas B. Efficient oblivious transfer protocols[C]//Proceedings of the 12th Annual ACMSIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2001:448-457. [57] Gentry C, Boneh D. A fully homomorphic encryption scheme:Volume 20[M]. Stanford University Stanford, 2009. [58] Clifton C, Kantarcioglu M, Vaidya J, et al. Tools for privacy preserving distributed data mining[J]. ACM Sigkdd Explorations Newsletter, 2002, 4(2):28-34. [59] Mcmahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics. 2017:1273-1282. [60] Zhu L, Liu Z, Han S. Deep leakage from gradients[C]//33rd Conference on Neural Information Processing Systems, 2019. [61] Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140. doi:10.1023/A:1018054314350. [62] Weingessel A, Dimitriadou E, Hornik K. An ensemble method for clustering[C]//Proceedings of the 3rd International Workshop on Distributed Statistical Computing, 2003. [63] Karypis G, Aggarwal R, Kumar V, et al. Multilevel hypergraph partitioning:Applications in VLSI domain[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1999, 7(1):69-79. [64] Zimek A, Campello R J, Sander J. Ensembles for unsupervised outlier detection:Challenges and research questions a position paper[J]. ACM SIGKDD Explorations Newsletter, 2014, 15(1):11-22. [65] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1):119-139. doi:10.1006/jcss.1997.1504. [66] Ho T K. Random decision forests[C]//Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1). Washington, DC, USA:IEEE Computer Society, 1995:278-282. [67] Dietterich T G, Bakiri G. Solving multiclass learning problems via error-correcting output codes[J]. Journal of Artificial Intelligence Research, 1995, 2(1):263-286. [68] Brown G, Wyatt J L, Tiňno P. Managing diversity in regression ensembles[J]. Journal of Machine Learning Research, 2005, 6:1621-1650. [69] Mendes-Moreira J A, Soares C, Jorge A M, et al. Ensemble approaches for regression:A survey[J]. ACM Computing Surveys, 2012, 45(1):10:1-10:40. doi:10.1145/2379776.2379786. [70] Wolpert D H. Stacked generalization[J]. Neural Networks, 1992, 5(2):241-259. [71] Chen T, Guestrin C. Xgboost:A scalable tree boosting system[C]//KDD'16:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2016:785-794. doi:10.1145/2939672.2939785. [72] Kontschieder P, Fiterau M, Criminisi A, et al. Deep neural decision forests[C]//IJCAI'16:Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. AAAI Press, 2016:4190-4194. [73] Topchy A, Jain A K, Punch W. Combining multiple weak clusterings[C]//Proceedings of the Third IEEE International Conference on Data Mining. Washington, DC, USA:IEEE Computer Society, 2003:331-338. [74] Strehl A, Ghosh J. Cluster ensembles-A knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3(Dec):583-617. [75] Fred A L, Jain A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6):835-850. [76] Wu J, Liu H, Xiong H, et al. K-means-based consensus clustering:A unified view[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(1):155-169. [77] Liu H, Wu J, Liu T, et al. Spectral ensemble clustering via weighted k-means:Theoretical and practical evidence[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(5):1129-1143. [78] Buckman J, Roy A, Raffel C, et al. Thermometer encoding:One-hot way to resist adversarial examples[C]//Proceedings of the 6th International Conference on Learning Representations (ICLR 2018), 2018. [79] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(Jan):993-1022. [80] Wang C, Blei D M. Collaborative topic modeling for recommending scientific articles[C]//KDD'11:Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2011:448-456. [81] Lin H, Zhu H, Zuo Y, et al. Collaborative company profiling:Insights from an employee's perspective[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017:1417-1423. [82] Melnyk I, Banerjee A, Matthews B, et al. Semi-markov switching vector autoregressive model-based anomaly detection in aviation systems[C]//KDD'16:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2016:1065-1074. http://doi.org/10.1145/2939672.2939789. [83] Lin H, Liu G, Wu J, et al. Fraud detection in dynamic interaction network[J]. IEEE Transactions on Knowledge and Data Engineering, 2019. doi:10.1109/TKDE.2019.2912817. [84] Li X, She J. Collaborative variational autoencoder for recommender systems[C]//KDD'17:Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2017:305-314. doi:10.1145/3097983.3098077. [85] Miura Y, Taniguchi M, Taniguchi T, et al. Unifying text, metadata, and user network representations with a neural network for geolocation prediction[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Vancouver, Canada:Association for Computational Linguistics, 2017:1260-1272. [86] Hu B, Shi C, Zhao W X, et al. Leveraging meta-path based context for top-N recommendation with a neural coattention model[C]//KDD'18:Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY, USA:ACM, 2018:1531-1540. doi:10.1145/3219819.3219965. [87] Wang J, Wu J, Wang Z, et al. Understanding urban dynamics via context-aware tensor factorization with neighboring regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2019. doi:10.1109/TKDE.2019.2915231. [88] Wang H, Zhang F, Wang J, et al. Ripplenet:Propagating user preferences on the knowledge graph for recommender systems[C]//CIKM'18:Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York, NY, USA:ACM, 2018:417-426. doi:10.1145/3269206.3271739. [89] Wang J, Lin Y, Wu J, et al. Coupling implicit and explicit knowledge for customer volume prediction[C]//Thirty-First AAAI Conference on Artificial Intelligence. 2017. [90] Wu M, Goodman N. Multimodal generative models for scalable weakly-supervised learning[C]//NIPS'18:Proceedings of the 32nd International Conference on Neural Information Processing Systems. USA:Curran Associates Inc., 2018:5580-5590. [91] Kendall A, Gal Y, Cipolla R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7482-7491. [92] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10):1345-1359. [93] Xu Y, Pan S J, Xiong H, et al. A unified framework for metric transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(6):1158-1171. [94] Long M, Zhu H, Wang J, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR.org, 2017:2208-2217. [95] Chang H, Han J, Zhong C, et al. Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(5):1182-1194. [96] Luo Z, Zou Y, Hoffman J, et al. Label efficient learning of transferable representations acrosss domains and tasks[C]//Advances in Neural Information Processing Systems, 2017:165-177. [97] Wang L, Geng X, Ma X, et al. Cross-city transfer learning for deep spatio-temporal prediction[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 2019:1893-1899. https://doi.org/10.24963/ijcai.2019/262. [98] Kaelbling L P, Littman M L, Moore A W. Reinforcement learning:A survey[J]. Journal of Artificial Intelligence Research, 1996, 4:237-285. [99] Sutton R S, Barto A G. Reinforcement learning:An introduction[M]. MIT press, 2018. [100] Szepesvári C. Algorithms for reinforcement learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2010, 4(1):1-103. [101] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550(7676):354-359. [102] Kober J, Bagnell J A, Peters J. Reinforcement learning in robotics:A survey[J]. The International Journal of Robotics Research, 2013, 32(11):1238-1274. [103] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533. [104] Wiering M. Multi-agent reinforcement learning for traffic light control[C]//Machine Learning:Proceedings of the Seventeenth International Conference (ICML'2000), 2000:1151-1158. [105] Wei H, Zheng G, Yao H, et al. Intellilight:A reinforcement learning approach for intelligent traffic light control[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:2496-2505. [106] Wei H, Chen C, Zheng G, et al. Presslight:Learning max pressure control to coordinate traffic signals in arterial network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019:1290-1298. [107] Nevmyvaka Y, Feng Y, Kearns M. Reinforcement learning for optimized trade execution[C]//Proceedings of the 23rd International Conference on Machine Learning. ACM, 2006:673-680. [108] Moody J, Wu L, Liao Y, et al. Performance functions and reinforcement learning for trading systems and portfolios[J]. Journal of Forecasting, 1998, 17(5-6):441-470. [109] Wang J, Zhang Y, Tang K, et al. Alphastock:A buying-winners-and-selling-losers investment strategy using interpretable deep reinforcement attention networks[C]//The 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019:1900-1908. [110] Kara A, Dogan I. Reinforcement learning approaches for specifying ordering policies of perishable inventory systems[J]. Expert Systems with Applications, 2018, 91:150-158. [111] Tesauro G, Jong N K, Das R, et al. A hybrid reinforcement learning approach to autonomic resource allocation[C]//2006 IEEE International Conference on Autonomic Computing. IEEE, 2006:65-73. [112] Maxwell M S, Restrepo M, Henderson S G, et al. Approximate dynamic programming for ambulance redeployment[J]. INFORMS Journal on Computing, 2010, 22(2):266-281. [113] 刘冠男, 曲金铭, 李小琳, 等. 基于深度强化学习的救护车动态重定位调度研究[J]. 管理科学学报, 2020, 23(2):38-52. Liu G N, Qu J M, Li X L, et al. Dynamic ambulance redeployment based on deep reinforcement learning[J]. Journal of Management Sciences in China, 2020, 23(2):38-52. [114] Tang X, Qin Z T, Zhang F, et al. A deep value-network based approach for multi-driver order dispatching[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019:1780-1790. [115] Xu Z, Li Z, Guan Q, et al. Large-scale order dispatch in on-demand ride-hailing platforms:A learning and planning approach[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:905-913. [116] Botvinick M, Ritter S, Wang J X, et al. Reinforcement learning, fast and slow[J]. Trends in Cognitive Sciences, 2019, 23(5):408-422. [117] 张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35(7):1-12. Zhang J Y, Wang H L, Guo Y, et al. Review of deep learning[J]. Application Research of Computers, 2018, 35(7):1-12. [118] Liu W, Wang Z, Liu X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234:11-26. [119] Dargan S, Kumar M, Ayyagari M R, et al. A survey of deep learning and its applications:A new paradigm to machine learning[J]. Archives of Computational Methods in Engineering, 2019. https://doi.org/10.1007/s11831-019-09344-w. [120] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [121] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. [122] Pouyanfar S, Sadiq S, Yan Y, et al. A survey on deep learning:Algorithms, techniques, and applications[J]. ACM Computing Surveys (CSUR), 2019, 51(5):92. [123] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [124] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:Association for Computational Linguistics, 2014:1724-1734. https://www.aclweb.org/anthology/D14-1179. doi:10.3115/v1/D14-1179. [125] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014. [126] Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. arXiv:Learning, 2019. [127] Zhou J, Cui G, Zhang Z, et al. Graph neural networks:A review of methods and applications[J]. arXiv preprint arXiv:1812.08434, 2018. [128] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[C]//International Conference on Learning Representations, 2017. [129] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10903, 2017. [130] Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3(Feb):1137-1155. [131] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems, 2013:3111-3119. [132] Arora S, Liang Y, Ma T. A simple but tough-to-beat baseline for sentence embeddings[C]//5th International Conference on Learning Representations, 2017. [133] Le Q, Mikolov T. Distributed representations of sentences and documents[C]//ICML'14:Proceedings of the 31st International Conference on International Conference on Machine Learning-Volume 32. JMLR.org, 2014:1188-1196. [134] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014:655-665. [135] Lai S, Xu L, Liu K, et al. Recurrent convolutional neural networks for text classification[C]//AAAI'15:Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI Press, 2015:2267-2273. [136] Perozzi B, Alrfou R, Skiena S. Deepwalk:Online learning of social representations[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining, 2014. [137] Aditya Grover J L. node2vec:Scalable feature learning for networks[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining, 2016. [138] Tang J, Qu M, Wang M Z, et al. Line:Large-scale information network embedding[C]//International Conference on World Wide Web, 2015. [139] Zuo Y, Liu G, Lin H, et al. Embedding temporal network via neighborhood formation[C]//KDD'18:Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018:2857-2866. [140] Wang D, Peng C, Zhu W. Structural deep network embedding[C]//Acm Sigkdd International Conference on Knowledge Discovery & Data Mining, 2016. [141] Bordes A, Usunier N, Garcia-Durán A, et al. Translating embeddings for modeling multi-relational data[C]//NIPS'13:Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2, 2013:2787-2795. [142] Wang Z, Zhang J, Feng J, et al. Knowledge graph embedding by translating on hyperplanes[C]//AAAI'14:Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014:1112-1119. [143] Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//AAAI'15:Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015:2181-2187. [144] He S, Liu K, Ji G, et al. Learning to represent knowledge graphs with Gaussian embedding[C]//CIKM'15:Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015:623-632. [145] Li X, Zhao K, Cong G, et al. Deep representation learning for trajectory similarity computation[C]//2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 2018:617-628. [146] Pan S, Ding T. Social media-based user embedding:A literature review[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. AAAI Press, 2019:6318-6324. [147] Siddharth N, Paige B, Van De Meent J W, et al. Learning disentangled representations with semi-supervised deep generative models[C]//Advances in Neural Information Processing Systems, 2017:5925-5935. [148] Hu Z, Yang Z, Liang X, et al. Toward controlled generation of text[C]//ICML'17:Proceedings of the 34th International Conference on Machine Learning-Volume 70, 2017:1587-1596. [149] Vlastelica M, Paulus A, Musil V, et al. Differentiation of blackbox combinatorial solvers[C]//International Conference on Learning Representations, 2020. [150] Lowry S, Macpherson G. A blot on the profession[J]. British Medical Journal, 1988, 296(6623):657-658. [151] Caliskan A, Bryson J J, Narayanan A. Semantics derived automatically from language corpora contain humanlike biases[J]. Science, 2017, 356(6334):183-186. [152] Kroll J A, Barocas S, Felten E W, et al. Accountable algorithms[J]. University of Pennsylvania Law Review, 2016, 165(3):633-706. [153] Danks D, London A J. Regulating autonomous systems:Beyond standards[J]. IEEE Intelligent Systems, 2017, 32(1):88-91. [154] Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled:High confidence predictions for unrecognizable images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:427-436. [155] Guidotti R, Monreale A, Ruggieri S, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys (CSUR), 2019, 51(5):93. [156] Ribeiro M T, Singh S, Guestrin C. Why should i trust you? Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016:1135-1144. [157] Ribeiro M T, Singh S, Guestrin C. Anchors:High-precision model-agnostic explanations[C]//Thirty-Second AAAI Conference on Artificial Intelligence, 2018. [158] Xu K, Ba J, Kiros R, et al. Show, attend and tell:Neural image caption generation with visual attention[C]//International Conference on Machine Learning, 2015:2048-2057. [159] Montavon G, Lapuschkin S, Binder A, et al. Explaining nonlinear classification decisions with deep taylor decomposition[J]. Pattern Recognition, 2017, 65:211-222. [160] Landecker W, Thomure M D, Bettencourt L M, et al. Interpreting individual classifications of hierarchical networks[C]//2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, 2013:32-38. [161] Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2921-2929. [162] Selvaraju R R, Cogswell M, Das A, et al. Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017:618-626. [163] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems, 2017:3856-3866. [164] Wang J, Feng K, Wu J. SVM-based deep stacking networks[C]//33rd AAAI Conference on Artificial Intelligence (AAAI'19), 2019. [165] Craven M, Shavlik J W. Extracting tree-structured representations of trained networks[C]//Advances in Neural Information Processing Systems, 1996:24-30. [166] Krishnan R, Sivakumar G, Bhattacharya P. Extracting decision trees from trained neural networks[J]. Pattern Recognition, 1999, 32(12):1999-2009. [167] Chipman H, George E, Mcculloh R. Making sense of a forest of trees[C]//Proceedings of the 30th Symposium on the Interface. Fairfax Station, VA:Interface Foundation of North America, 1998:84-92. [168] Schetinin V, Fieldsend J E, Partridge D, et al. Confident interpretation of bayesian decision tree ensembles for clinical applications[J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(3):312-319. [169] Lou Y, Caruana R, Gehrke J. Intelligible models for classification and regression[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012:150-158. [170] Lou Y, Caruana R, Gehrke J, et al. Accurate intelligible models with pairwise interactions[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2013:623-631. [171] Henelius A, Puolamäki K, Boström H, et al. A peek into the black box:exploring classifiers by randomization[J]. Data Mining and Knowledge Discovery, 2014, 28(5-6):1503-1529. [172] Sonnenburg S, Zien A, Philips P, et al. Poims:Positional oligomer importance matrices-understanding support vector machine-based signal detectors[J]. Bioinformatics, 2008, 24(13):i6-i14. [173] Wang J, Wang Z, Li J, et al. Multilevel wavelet decomposition network for interpretable time series analysis[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:2437-2446. [174] Horel E, Giesecke K. Towards explainable AI:Significance tests for neural networks[J]. arXiv preprint arXiv:1902.06021, 2019. [175] Yang C, Rangarajan A, Ranka S. Global model interpretation via recursive partitioning[C]//2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2018:1563-1570. [176] Wager S, Athey S. Estimation and inference of heterogeneous treatment effects using random forests[J]. Journal of the American Statistical Association, 2018, 113(523):1228-1242. [177] Johansson F, Shalit U, Sontag D. Learning representations for counterfactual inference[C]//International Conference on Machine Learning, 2016:3020-3029. [178] Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6):391-407. [179] Hofmann T. Probabilistic latent semantic analysis[C]//UAI'99:Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 1999:289-296. [180] Tang J, Zhang M, Mei Q. One theme in all views:Modeling consensus topics in multiple contexts[C]//KDD'13:Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2013:5-13. [181] Zuo Y, Wu J, Zhang H, et al. Complementary aspect-based opinion mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(2):249-262. [182] Quan X, Kit C, Ge Y, et al. Short and sparse text topic modeling via self-aggregation[C]//IJCAI'15:Proceedings of the 24th International Conference on Artificial Intelligence. AAAI Press, 2015:2270-2276. [183] Zuo Y, Wu J, Zhang H, et al. Topic modeling of short texts:A pseudo-document view[C]//KDD'16:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2016:2105-2114. [184] Yoshii K, Goto M, Komatani K, et al. An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(2):435-447. [185] Yin H, Zhou X, Shao Y, et al. Joint modeling of user check-in behaviors for point-of-interest recommendation[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM, 2015:1631-1640. [186] Jacobs B J, Donkers B, Fok D. Model-based purchase predictions for large assortments[J]. Marketing Science, 2016, 35(3):389-404. [187] Jiang M, Cui P, Liu R, et al. Social contextual recommendation[C]//CIKM'12:Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York, NY, USA:Association for Computing Machinery, 2012:45-54. [188] Zhu H, Chen E, Xiong H, et al. Mining mobile user preferences for personalized context-aware recommendation[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2015, 5(4):58. [189] Liu B, Kong D, Cen L, et al. Personalized mobile app recommendation:Reconciling app functionality and user privacy preference[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. ACM, 2015:315-324. [190] Kingma D P, Welling M. Auto-encoding variational bayes[C]//2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. [191] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014:2672-2680. [192] Li C, Zhu J, Shi T, et al. Max-margin deep generative models[C]//Advances in Neural Information Processing Systems, 2015:1837-1845. [193] Ho J, Ermon S. Generative adversarial imitation learning[C]//Advances in Neural Information Processing Systems, 2016:4565-4573. [194] Wang H, Wang J, Wang J, et al. Graphgan:Graph representation learning with generative adversarial nets[C]//Thirty-Second AAAI Conference on Artificial Intelligence, 2018. [195] Feuerriegel S, Gordon J. Long-term stock index forecasting based on text mining of regulatory disclosures[J]. Decision Support Systems, 2018, 112:88-97. [196] 部慧, 解峥, 李佳鸿, 等. 基于股评的投资者情绪对股票市场的影响[J]. 管理科学学报, 2018, 21(4):86-101. Bu H, Xie Z, Li J H, et al. Investor sentiment extracted from internet stock message boards and its effect on Chinese stock market[J]. Journal of Management Sciences in China, 2018, 21(4):86-101. [197] Jung Y, Suh Y. Mining the voice of employees:A text mining approach to identifying and analyzing job satisfaction factors from online employee reviews[J]. Decision Support Systems, 2019,123:113074. [198] Wu Z, Cao J, Wang Y, et al. HPSD:A hybrid pu-learning-based spammer detection model for product reviews[J]. IEEE Transactions on Cybernetics, 2020, 50(4):1595-1606. [199] Ibrahim N F, Wang X. A text analytics approach for online retailing service improvement:Evidence from Twitter[J]. Decision Support Systems, 2019, 121:37-50. [200] Brown P F, Desouza P V, Mercer R L, et al. Class-based n-gram models of natural language[J]. Computational Linguistics, 1992, 18(4):467-479. [201] Severyn A, Moschitti A. Twitter sentiment analysis with deep convolutional neural networks[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2015:959-962. [202] Chiu J P, Nichols E. Named entity recognition with bidirectional LSTM-CNNS[J]. Transactions of the Association for Computational Linguistics, 2016, 4:357-370. [203] Alsumait L, Barbará D, Domeniconi C. On-line LDA:Adaptive topic models for mining text streams with applications to topic detection and tracking[C]//2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008:3-12. [204] Shahnaz F, Berry M W, Pauca V P, et al. Document clustering using nonnegative matrix factorization[J]. Information Processing & Management, 2006, 42(2):373-386. [205] Kingma D P, Welling M. Auto-encoding variational Bayes[J]. arXiv preprint arXiv:1312.6114, 2013. [206] Dos Santos C, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts[C]//Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics:Technical Papers. 2014:69-78. [207] He R, Lee W S, Ng H T, et al. An interactive multi-task learning network for end-to-end aspect-based sentiment analysis[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:Association for Computational Linguistics, 2019:504-515. [208] Trisedya B D, Weikum G, Qi J, et al. Neural relation extraction for knowledge base enrichment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:Association for Computational Linguistics, 2019:229-240. [209] Moon S, Shah P, Kumar A, et al. OpenDialKG:Explainable conversational reasoning with attention-based walks over knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:Association for Computational Linguistics, 2019:845-854. [210] Zhang X, Yang Y, Yuan S, et al. Syntax-infused variational autoencoder for text generation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:Association for Computational Linguistics, 2019:2069-2078. [211] Xu K, Lai Y, Feng Y, et al. Enhancing key-value memory neural networks for knowledge based question answering[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long and Short Papers), 2019:2937-2947. [212] Zhuang Y, Wang H. Token-level dynamic self-attention network for multi-passage reading comprehension[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:Association for Computational Linguistics, 2019:2252-2262. [213] Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations[C]//Proceedings of NAACLHLT, 2018:2227-2237. [214] Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pre-training[J]. http://www.nlpir.org/wordpress/wp-content/uploads/2019/06/Improving-language-understanding-by-generative-pre-training.pdf, 2018. [215] Devlin J, Chang M W, Lee K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long and Short Papers), 2019:4171-4186. [216] Yang Z, Dai Z, Yang Y, et al. Xlnet:Generalized autoregressive pretraining for language understanding[C]//Advances in Neural Information Processing Systems, 2019:5754-5764. [217] Lan Z, Chen M, Goodman S, et al. Albert:A lite bert for self-supervised learning of language representations[C]//International Conference on Learning Representations, 2019. [218] Pazzani M J, Billsus D. Content-based recommendation systems[M]//The Adaptive Web. Springer, 2007:325-341. [219] Linden G, Smith B, York J. Amazon.com recommendations:Item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80. [220] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009(8):30-37. [221] Mnih A, Salakhutdinov R R. Probabilistic matrix factorization[C]//Advances in Neural Information Processing Systems, 2008:1257-1264. [222] Vargas S, Castells P. Rank and relevance in novelty and diversity metrics for recommender systems[C]//Proceedings of the Fifth ACM Conference on Recommender Systems, 2011:109-116. [223] Oestreicher-Singer G, Sundararajan A. Recommendation networks and the long tail of electronic commerce[J]. MIS Quarterly, 2012, 36(1):65-83. [224] He X, Liao L, Zhang H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, 2017:173-182. [225] Cheng H T, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016:7-10. [226] Wang R, Fu B, Fu G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD'17. ACM, 2017:12. [227] Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:1059-1068. [228] Lu S, Xiao L, Ding M. A video-based automated recommender (var) system for garments[J]. Marketing Science, 2016, 35(3):484-510. [229] Ansari A, Li Y, Zhang J Z. Probabilistic topic model for hybrid recommender systems:A stochastic variational bayesian approach[J]. Marketing Science, 2018, 37(6):987-1008. [230] Zhang F, Yuan N J, Lian D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016:353-362. [231] Liu G, Fu Y, Chen G, et al. Modeling buying motives for personalized product bundle recommendation[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2017, 11(3):1-26. [232] Zhang L, Liu G, Wu J. Beyond similarity:Relation embedding with dual attentions for item-based recommendation[J]. arXiv preprint arXiv:1911.04099, 2019. [233] He J, Fang X, Liu H, et al. Mobile app recommendation:An involvement-enhanced approach[J]. MIS Quarterly, 2019, 43(3):827-850. [234] Gao H, Tang J, Hu X, et al. Content-aware point of interest recommendation on location-based social networks[C]//Twenty-ninth AAAI conference on Artificial Intelligence, 2015. [235] Xie M, Yin H, Wang H, et al. Learning graph-based poi embedding for location-based recommendation[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 2016:15-24. [236] Kawaguchi K, Uetake K, Watanabe Y. Effectiveness of product recommendations under time and crowd pressures[J]. Marketing Science, 2019, 38(2):253-273. [237] Dzyabura D, Hauser J R. Recommending products when consumers learn their preference weights[J]. Marketing Science, 2019, 38(3):417-441. [238] Oestreicher-Singer G, Sundararajan A. The visible hand? Demand effects of recommendation networks in electronic markets[J]. Management Science, 2012, 58(11):1963-1981. [239] Lin Z, Goh K Y, Heng C S. The demand effects of product recommendation networks:An empirical analysis of network diversity and stability[J]. MIS Quarterly, 2017, 41(2):397-426. [240] Liang C, Shi Z, Raghu T. The spillover of spotlight:Platform recommendation in the mobile app market[J]. Information Systems Research, 2019, 30(4):1296-1318. [241] Adomavicius G, Bockstedt J C, Curley S P, et al. Effects of online recommendations on consumers' willingness to pay[J]. Information Systems Research, 2018, 29(1):84-102. [242] Prawesh S, Padmanabhan B. The "most popular news" recommender:Count amplification and manipulation resistance[J]. Information Systems Research, 2014, 25(3):569-589. [243] Song Y, Sahoo N, Ofek E. When and how to diversify-A multicategory utility model for personalized content recommendation[J]. Management Science, 2019, 65(8):3737-3757. [244] Adomavicius G, Kwon Y. Optimization-based approaches for maximizing aggregate recommendation diversity[J]. INFORMS Journal on Computing, 2014, 26(2):351-369. [245] Jiang H, Qi X, Sun H. Choice-based recommender systems:A unified approach to achieving relevancy and diversity[J]. Operations Research, 2014, 62(5):973-993. [246] Beutel A, Chen J, Doshi T, et al. Fairness in recommendation ranking through pairwise comparisons[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019:2212-2220. [247] Wang W, Xu J, Wang M. Effects of recommendation neutrality and sponsorship disclosure on trust vs. distrust in online recommendation agents:Moderating role of explanations for organic recommendations[J]. Management Science, 2018, 64(11):5198-5219. [248] Gu S, Kelly B, Xiu D. Empirical asset pricing via machine learning[J]. Review of Financial Studies, 2020, 33(5):2223-2273. [249] Grudnitski G, Osburn L. Forecasting S&P and gold futures prices:An application of neural networks[J]. Journal of Futures Markets, 1993, 13(6):631-643. [250] Tay F E, Cao L. Application of support vector machines in financial time series forecasting[J]. Omega, 2001, 29(4):309-317. [251] Huang W, Nakamori Y, Wang S Y. Forecasting stock market movement direction with support vector machine[J]. Computers & Operations Research, 2005, 32(10):2513-2522. [252] Li J, Bu H, Wu J. Sentiment-aware stock market prediction:A deep learning method[C]//2017 International Conference on Service Systems and Service Management. IEEE, 2017:1-6. [253] Tsaih R, Hsu Y, Lai C C. Forecasting S&P 500 stock index futures with a hybrid AI system[J]. Decision Support Systems, 1998, 23(2):161-174. [254] Pai P F, Lin C S. A hybrid arima and support vector machines model in stock price forecasting[J]. Omega, 2005, 33(6):497-505. [255] Yu L, Wang S, Lai K K. Forecasting crude oil price with an emd-based neural network ensemble learning paradigm[J]. Energy Economics, 2008, 30(5):2623-2635. [256] Lu C J, Lee T S, Chiu C C. Financial time series forecasting using independent component analysis and support vector regression[J]. Decision Support Systems, 2009, 47(2):115-125. [257] Wang S, Yu L, Kin K L. Crude oil price forecasting with TEI@I methodology[J]. Journal of Systems Science & Complexity, 2005, 18(2):145-166. [258] 闫妍,徐伟,部慧,等. 基于TEIl@I方法论的房价预测方法[J]. 系统工程理论与实践, 2007, 27(7): 1-9. Yan Y, Xu W, Bu H, et al. Method for housing price forecasting based on TEI@I methodology[J]. Systems Engineering-Theory & Practice, 2007, 27(7):1-9. [259] Franses P H. Merging models and experts[J]. International Journal of Forecasting, 2008, 24(1):31-33. [260] Olson D, Mossman C. Neural network forecasts of canadian stock returns using accounting ratios[J]. International Journal of Forecasting, 2003, 19(3):453-465. [261] Schumaker R P, Chen H. Textual analysis of stock market prediction using breaking financial news:The azfin text system[J]. ACM Transactions on Information Systems, 2009, 27(2):12. [262] Ding X, Zhang Y, Liu T, et al. Deep learning for event-driven stock prediction[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. AAAI Press, 2015:2327-2333. [263] Armstrong J S. Principles of forecasting:A handbook for researchers and practitioners:Volume 30[M]. Springer Science & Business Media, 2001. [264] Chen C, Li Y, Bu H, et al. Forecasting on trading:A parameter adaptive framework based on q-iearning[C]//2018 International Conference on Service Systems and Service Management. IEEE, 2018:1-6. [265] Agarwal S, Chen V Y S, Zhang W. The information value of credit rating action reports:A textual analysis[J]. Management Science, 2016, 62(8):2218-2240. [266] Mai F, Tian S, Lee C, et al. Deep learning models for bankruptcy prediction using textual disclosures[J]. European Journal of Operational Research, 2019, 274(2):743-758. [267] Lin M, Prabhala N R, Viswanathan S. Judging borrowers by the company they keep:Friendship networks and information asymmetry in online peer-to-peer lending[J]. Management Science, 2013, 59(1):17-35. [268] Wei Y, Yildirim P, Van Den Bulte C, et al. Credit scoring with social network data[J]. Marketing Science, 2015, 35(2):234-258. [269] Oskarsdottir M, Bravo C, Sarraute C, et al. The value of big data for credit scoring:Enhancing financial inclusion using mobile phone data and social network analytics[J]. Applied Soft Computing, 2019, 74:26-39. [270] Berg T, Burg V, Gombovic A, et al. On the rise of fintechs:Credit scoring using digital footprints[J]. Review of Financial Studies, 2020, 33(7):2845-2897. [271] Baesens B, Setiono R, Mues C, et al. Using neural network rule extraction and decision tables for credit-risk evaluation[J]. Management Science, 2003, 49(3):312-329. [272] Martens D, Baesens B, Van Gestel T, et al. Comprehensible credit scoring models using rule extraction from support vector machines[J]. European Journal of Operational Research, 2007, 183(3):1466-1476. [273] He J, Zhang Y, Shi Y, et al. Domain-driven classification based on multiple criteria and multiple constraint-level programming for intelligent credit scoring[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(6):826-838. [274] Lazer D, Pentland A, Adamic L, et al. Computational social science[J]. Science, 2009, 323(5915):721-723. [275] Mann A. Core concept:Computational social science[J]. Proceedings of the National Academy of Sciences, 2016, 113(3):468-470. [276] Watts D J. Computational social science:Exciting progress and future directions[J]. The Bridge on Frontiers of Engineering, 2013, 43(4):5-10. [277] May R M, Lloyd A L. Infection dynamics on scale-free networks[J]. Physical Review E, 2001, 64(6):066112. [278] Newman M E. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2):167-256. [279] Li M, Wang X, Gao K, et al. A survey on information diffusion in online social networks:Models and methods[J]. Information, 2017, 8(4):118. [280] Golder S A, Macy M W. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures[J]. Science, 2011, 333(6051):1878-1881. [281] Zhao J, Dong L, Wu J, et al. Moodlens:An emoticon-based sentiment analysis system for Chinese tweets[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012:1528-1531. [282] Schouten K, Frasincar F. Survey on aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 28(3):813-830. [283] Kosinski M, Stillwell D, Graepel T. Private traits and attributes are predictable from digital records of human behavior[J]. Proceedings of the National Academy of Sciences, 2013, 110(15):5802-5805. [284] Mathioudakis M, Koudas N. Twittermonitor:Trend detection over the twitter stream[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. ACM, 2010:1155-1158. [285] Xie W, Zhu F, Jiang J, et al. Topicsketch:Real-time bursty topic detection from twitter[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8):2216-2229. [286] Wu K, Yang S, Zhu K Q. False rumors detection on sina weibo by propagation structures[C]//2015 IEEE 31st International Conference on Data Engineering. IEEE, 2015:651-662. [287] Vosoughi S. Automatic detection and verification of rumors on twitter[D]. Massachusetts Institute of Technology, 2015. [288] Vosoughi S, Roy D, Aral S. The spread of true and false news online[J]. Science, 2018, 359(6380):1146-1151. [289] Zhang C, Liu L, Lei D, et al. Triovecevent:Embedding-based online local event detection in geo-tagged tweet streams[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017:595-604. [290] Sakaki T, Okazaki M, Matsuo Y. Tweet analysis for real-time event detection and earthquake reporting system development[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 25(4):919-931. [291] Ginsberg J, Mohebbi M H, Patel R S, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457(7232):1012-1014. [292] Sharpe J D, Hopkins R S, Cook R L, et al. Evaluating google, twitter, and wikipedia as tools for influenza surveillance using Bayesian change point analysis:A comparative analysis[J]. JMIR Public Health and Surveillance, 2016, 2(2):e161. [293] Wang J, Wang X, Wu J. Inferring metapopulation propagation network for intra-city epidemic control and prevention[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018:830-838. [294] Eagle N, Macy M, Claxton R. Network diversity and economic development[J]. Science, 2010, 328(5981):1029-1031. [295] Blumenstock E J. Fighting poverty with data[J]. Science, 2016, 353(6301):753-754. [296] Toole J L, Lin Y R, Muehlegger E, et al. Tracking employment shocks using mobile phone data[J]. Journal of The Royal Society Interface, 2015, 12(107):20150185. [297] Hu X, Zhao J, Li H, et al. Online footprints of workforce migration and economic implications[J]. Physica A:Statistical Mechanics and its Applications, 2019, 528:121497. [298] Blumenstock J, Cadamuro G, On R. Predicting poverty and wealth from mobile phone metadata[J]. Science, 2015, 350(6264):1073-1076. [299] Luo S, Morone F, Sarraute C, et al. Inferring personal economic status from social network location[J]. Nature Communications, 2017, 8:15227. [300] Berkman L F, Syme S L. Social networks, host resistance, and mortality:A nine-year follow-up study of alameda county residents[J]. American Journal of Epidemiology, 1979, 109(2):186-204. [301] Hobbs W R, Burke M, Christakis N A, et al. Online social integration is associated with reduced mortality risk[J]. Proceedings of the National Academy of Sciences, 2016, 113(46):12980-12984. [302] Issenberg S. How president Obama's campaign used big data to rally individual voters[J]. Technology Review, 2013, 116(1):38-49. [303] Nickerson D W, Rogers T. Political campaigns and big data[J]. Journal of Economic Perspectives, 2014, 28(2):51-74. [304] Xie Z, Liu G, Wu J, et al. Big data would not lie:Prediction of the 2016 Taiwan election via online heterogeneous information[J]. EPJ Data Science, 2018, 7(1):32. [305] Burnap P, Gibson R, Sloan L, et al. 140 characters to victory? Using twitter to predict the UK 2015 general election[J]. Electoral Studies, 2016, 41:230-233. [306] Grassegger H, Mikael K. The data that turned the world upside down[EB/OL]. https://www.vice.com/enus/article/mg9vvn/how-our-likes-helped-trump-win. [307] Leetaru K. Culturomics 2.0:Forecasting large-scale human behavior using global news media tone in time and space[J]. First Monday, 2011, 16(9). https://doi.org/10.5210/fm.v16i9.3663 [308] Chadefaux T. Early warning signals for war in the news[J]. Journal of Peace Research, 2014, 51(1):5-18. [309] Wang J, Wu N, Zhao W X, et al. Empowering A* search algorithms with neural networks for personalized route recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019:539-547. [310] Wu N, Wang J, Zhao W X, et al. Learning to effectively estimate the travel time for fastest route recommendation[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019:1923-1932. [311] Wang D, Zhang J, Cao W, et al. When will you arrive? Estimating travel time based on deep neural networks[C]//Thirty-Second AAAI Conference on Artificial Intelligence, 2018. [312] Feng J, Li Y, Zhang C, et al. Deepmove:Predicting human mobility with attentional recurrent networks[C]//Proceedings of the 2018 World Wide Web Conference, 2018:1459-1468. [313] Li Y, Shahabi C. A brief overview of machine learning methods for short-term traffic forecasting and future directions[J]. SIGSPATIAL Special, 2018, 10(1):3-9. [314] Wang J, Mao Y, Li J, et al. Predictability of road traffic and congestion in urban areas[J]. PloS One, 2015, 10(4):e0121825. [315] Fu R, Zhang Z, Li L. Using LSTM and GRU neural network methods for traffic flow prediction[C]//201631st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2016:324-328. [316] Wang J, Gu Q, Wu J, et al. Traffic speed prediction and congestion source exploration:A deep learning method[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016:499-508. [317] Geng X, Li Y, Wang L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//2019 AAAI Conference on Artificial Intelligence (AAAI 19), 2019. [318] Yao H, Wu F, Ke J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//ThirtySecond AAAI Conference on Artificial Intelligence, 2018. [319] Yao H, Tang X, Wei H, et al. Revisiting spatial-temporal similarity:A deep learning framework for traffic prediction[C]//AAAI Conference on Artificial Intelligence, 2019. [320] Ye J, Sun L, Du B, et al. Co-prediction of multiple transportation demands based on deep spatio-temporal neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019:305-313. [321] Guo S, Chen C, Wang J, et al. Rod-revenue:Seeking strategies analysis and revenue prediction in ride-ondemand service using multi-source urban data[J]. IEEE Transactions on Mobile Computing, 2019. [322] Guo S, Chen C, Wang J, et al. Fine-grained dynamic price prediction in ride-on-demand services:Models and evaluations[J]. Mobile Networks and Applications, 2019:1-16. [323] Ji S, Zheng Y, Wang W, et al. Real-time ambulance redeployment:A data-driven approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2019. [324] Kool W, Van Hoof H, Welling M. Attention, learn to solve routing problems![C/OL]//International Conference on Learning Representations, 2019. https://openreview.net/forum?id=ByxBFsRqYm. [325] 郑宇. 城市计算概述[J]. 武汉大学学报(信息科学版), 2015, 40(1):1-13. Zheng Y. Introduction to urban computing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):1-13. [326] Wang J, He X, Wang Z, et al. CD-CNN:A partially supervised cross-domain deep learning model for urban resident recognition[C]//Thirty-Second AAAI Conference on Artificial Intelligence, 2018. [327] Wang J, Wu N, Lu X, et al. Deep trajectory recovery with fine-grained calibration using Kalman filter[J]. IEEE Transactions on Knowledge and Data Engineering, 2019. doi:10.1109/TKDE.2019.2940950. [328] Du B, Liu C, Zhou W, et al. Catch me if you can:Detecting pickpocket suspects from large-scale transit records[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016:87-96. [329] Kim S, Lee J G. Utilizing in-store sensors for revisit prediction[C]//2018 IEEE International Conference on Data Mining. IEEE, 2018:217-226. [330] Lin H, Liu G, Li F, et al. Where to go? Predicting next location in IOT environment[J]. Frontiers of Computer Science, 2019. doi:10.1007/s11704-019-9118-9. [331] Liu Y, Sui Z, Kang C, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data[J]. PloS One, 2014, 9(1):e86026. [332] Liu S, Liu Y, Ni L M, et al. Towards mobility-based clustering[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2010:919-928. [333] Yuan J, Zheng Y, Xie X. Discovering regions of different functions in a city using human mobility and pois[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012:186-194. [334] Pang L X, Chawla S, Liu W, et al. On detection of emerging anomalous traffic patterns using GPS data[J]. Data & Knowledge Engineering, 2013, 87:357-373. [335] Fan Z, Song X, Shibasaki R. Cityspectrum:A non-negative tensor factorization approach[C]//Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 2014:213-223. [336] Wang J, Gao F, Cui P, et al. Discovering urban spatio-temporal structure from time-evolving traffic networks[C]//Asia-Pacific Web Conference. Springer, 2014:93-104. [337] Wang Y, Zheng Y, Xue Y. Travel time estimation of a path using sparse trajectories[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2014:25-34. [338] Zheng Y, Liu F, Hsieh H P. U-air:When urban air quality inference meets big data[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2013:1436-1444. [339] Wang J, Chen C, Wu J, et al. No longer sleeping with a bomb:A duet system for protecting urban safety from dangerous goods[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017:1673-1681. [340] Lian D, Ge Y, Zhang F, et al. Scalable content-aware collaborative filtering for location recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6):1122-1135. [341] Wu R, Luo G, Shao J, et al. Location prediction on trajectory data:A review[J]. Big Data Mining and Analytics, 2018, 1(2):108-127. [342] 方文凤, 周朝荣, 孙三山. 移动群智感知中任务分配的研究[J]. 计算机应用研究, 2018, 35(11):3206-3212. Fang W F, Zhou C R, Sun S S. Research on task assignment for mobile crowd sensing[J]. Application Research of Computers, 2018, 35(11):3206-3212. [343] Xiao M, Wu J, Huang L, et al. Multi-task assignment for crowdsensing in mobile social networks[C]//2015 IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015:2227-2235. [344] Xiao M, Wu J, Huang L, et al. Online task assignment for crowdsensing in predictable mobile social networks[J]. IEEE Transactions on Mobile Computing, 2016, 16(8):2306-2320. [345] Yang F, Lu J L, Zhu Y, et al. Heterogeneous task allocation in participatory sensing[C]//2015 IEEE Global Communications Conference (GLOBECOM). IEEE, 2015:1-6. [346] Wang Z, Huang D, Wu H, et al. Qos-constrained sensing task assignment for mobile crowd sensing[C]//2014 IEEE Global Communications Conference. IEEE, 2014:311-316. [347] Nazari M, Oroojlooy A, Snyder L, et al. Reinforcement learning for solving the vehicle routing problem[C]//Advances in Neural Information Processing Systems, 2018:9839-9849. [348] 吴垚, 曾菊儒, 彭辉, 等. 群智感知激励机制研究综述[J]. 软件学报, 2016, 27(8):2025-2047. Wu Y, Zeng J R, Peng H, et al. Survey on incentive mechanisms for crowd sensing[J]. Journal of Software, 2016, 27(8):2025-2047. [349] Reddy S, Estrin D, Hansen M, et al. Examining micro-payments for participatory sensing data collections[C]//Proceedings of the 12th ACM International Conference on Ubiquitous Computing, 2010:33-36. [350] Wen Y, Shi J, Zhang Q, et al. Quality-driven auction-based incentive mechanism for mobile crowd sensing[J]. IEEE Transactions on Vehicular Technology, 2014, 64(9):4203-4214. [351] Kawajiri R, Shimosaka M, Kashima H. Steered crowdsensing:Incentive design towards quality-oriented placecentric crowdsensing[C]//Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014:691-701. [352] Zhou J, Cao Z, Dong X, et al. Security and privacy in cloud-assisted wireless wearable communications:Challenges, solutions, and future directions[J]. IEEE Wireless Communications, 2015, 22(2):136-144.